定義在復數(shù)集上的函數(shù)f(z-i)=
.
z
1-z
,則f(i)=( 。
A、
1
2
-
1
2
i
B、
1
2
+
1
2
i
C、
4
5
-
2
5
i
D、-
4
5
+
2
5
i
考點:復數(shù)代數(shù)形式的乘除運算,函數(shù)解析式的求解及常用方法
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)的運算法則、共軛復數(shù)的定義即可得出.
解答: 解:取z=2i,
則f(i)=f(z-i)=
.
z
1-z
=
-2i
1-2i
=
-2i(1+2i)
(1-2i)(1+2i)
=
-2i+4
5
=
4
5
-
2
5
i

故選:C.
點評:本題考查了復數(shù)的運算法則、共軛復數(shù)的定義,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設△ABC的三邊長分別為a、b、c,△ABC的面積為S,則△ABC的內(nèi)切圓半徑為r=
2S
a+b+c
,將此結(jié)論類比到空間四面體:設四面體S-ABCD的四個面的面積分別為S1,S2,S3,S4,體積為V,則四面體的內(nèi)切球半徑r=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若從1,2,3,…,9這9個整數(shù)中同時取4個不同的數(shù),其和為偶數(shù),則不同的取法共有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面給出了四個推理:
①由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,歸納:對一切n∈N*,(n+1)2>2n
②已知△ABC周長為c,且它的內(nèi)切圓半徑為r,則三角形的面積為
1
2
cr,類比:若四面體D-ABC的表面積
為s,內(nèi)切球半徑為r,則其體積是
1
3
sr;
③“若a,b∈R,則a-b>0⇒a>b”,類比:“若a,b∈C,(C為復數(shù)集)則a-b>0⇒a>b”;
④由圓x2+y2=r2的面積s=πr2,類比:橢圓
x2
a2
+
y2
b2
=1的面積s=πab.
上述四個推理中,結(jié)論正確的是( 。
A、①②B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若sinA:sinB:sinC=3:4:5,則cosA的值為( 。
A、
3
5
B、
4
5
C、0
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F是拋物線y=
1
8
x2的焦點,P是該拋物線上的動點,則PF中點的軌跡方程是( 。
A、x2-4y+2=0
B、2x2-8y+1=0
C、x2-4y+4=0
D、2x2-8y+6=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
lnx
x
在點(x0,f(x0))處的切線平行于x軸,則f(x0)等于(  )
A、-
1
e
B、
1
e
C、
1
e2
D、e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
4x
x2+1
(x∈R)( 。
A、既有最大值2,又有最小值-2
B、無最大值,但有最小值-2
C、有最大值2,但無最小值
D、既無最大值,又無最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義兩個平面向量的一種新運算
a
?
b
=|
a
|•|
b
|sin<
a
,
b
>,(其中<
a
b
>表示
a
,
b
的夾角),則對于兩個平面向量
a
,
b
,下列結(jié)論不一定成立的是( 。
A、
a
?
b
=
b
?
a
B、(
a
?
b
2+(
a
b
2=|
a
|2•|
b
|2
C、λ(
a
?
b
)=(λ
a
)?
b
D、若
a
?
b
=0,則
a
b
平行

查看答案和解析>>

同步練習冊答案