2.函數(shù)$f(x)=ln(x+2)-\frac{2}{x}$的零點所在的區(qū)間是( 。
A.(3,4)B.(2,e)C.(0,1)D.(1,2)

分析 函數(shù)f(x)的零點所在區(qū)間需滿足的條件是函數(shù)在區(qū)間端點的函數(shù)值符號相反.

解答 解:∵f(1)=ln3-2<lne2-2=0,
f(2)=ln4-1>lne-1=0,
∴函數(shù)f(x)的零點所在區(qū)間是 (1,2),
故選:D.

點評 本題考查函數(shù)的零點的判定定理,連續(xù)函數(shù)在某個區(qū)間存在零點的條件是函數(shù)在區(qū)間端點處的函數(shù)值異號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.△ABC中,角A,B,C所對應(yīng)的邊分別為b,b,c,若$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(1)求角A的大小;
(2)若△ABC的面積為S,求$\frac{S}{\overrightarrow{AB}•\overrightarrow{AC}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)若2a=5b=10,求$\frac{1}{a}+\frac{1}$的值;
(2)計算:${[{({0.064^{\frac{1}{5}}})^{-2.5}}]^{\frac{2}{3}}}-\root{3}{{3\frac{3}{8}}}-{π^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的圖象如圖所示,則cosφ=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個梯形采用斜二測畫法作出其直觀圖,則其直觀圖的面積是原來梯形面積的( 。
A.$\frac{\sqrt{2}}{4}$倍B.$\frac{1}{2}$倍C.$\frac{\sqrt{2}}{2}$倍D.$\sqrt{2}$倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計算下列各式的值
(Ⅰ)lg24-lg3-lg4+lg5
(Ⅱ)${(\root{3}{3}•\sqrt{2})^6}+{(\sqrt{3\sqrt{3}})^{\frac{4}{3}}}-\root{4}{2}×{8^{0.25}}-{(2015)^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知方程x2+ax+2b=0(a∈R,b∈R),其一根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),則$\frac{b-3}{a-1}$的取值范圍為$(\frac{1}{2},\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在一個底面半徑為1,高為3的圓柱形容器中放滿水,再把容器傾斜倒出$\frac{1}{3}$水,此時圓柱體的母線與水平面所成角的大小是45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在實數(shù)集R上的可導(dǎo)函數(shù),且其導(dǎo)函數(shù)為f′(x),若f′(x)<f(x)在R上恒成立,則不等式ef(x)>f(1)ex上的解集為( 。
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案