5.已知函數(shù)$f(x)={log_a}\frac{x-1}{x+1}$(其中a>0且a≠1).
(1)討論函數(shù)f(x)的奇偶性;
(2)已知關(guān)于x的方程${log_a}\frac{m}{(x+1)(7-x)}=f(x)$在區(qū)間[2,6]上有實數(shù)解,求實數(shù)m的取值范圍.

分析 (1)求定義域可知關(guān)于原點對稱,計算可得f(-x)=-f(x),可得奇函數(shù);
(2)由題意問題轉(zhuǎn)化為求函數(shù)m=(x-1)(7-x)在x∈[2,6]上的值域,由二次函數(shù)區(qū)間的值域可得.

解答 解:(1)由對數(shù)有意義可得$\frac{x-1}{x+1}$>0,解得x<-1或x>1,
∴$f(x)={log_a}\frac{x-1}{x+1}$的定義域為(-∞,-1)∪(1,+∞),
關(guān)于原點對稱,又$f(-x)={log_a}\frac{-x-1}{-x+1}={log_a}\frac{x+1}{x-1}$,
∴f(-x)=-f(x),∴函數(shù)f(x)為奇函數(shù);
(2)由題意可得$\left\{\begin{array}{l}\frac{m}{(x+1)(7-x)}>0\\ \frac{x-1}{x+1}>0\\ \frac{m}{(x+1)(7-x)}=\frac{x-1}{x+1}\end{array}\right.$,
問題轉(zhuǎn)化為求函數(shù)m=(x-1)(7-x)在x∈[2,6]上的值域,
該函數(shù)在[2,4]上遞增,在[4,6]上遞減,
∴當(dāng)x=2或6時,m取最小值5,∴當(dāng)x=4時,m取最大值9,
∴m的取值范圍為[5,9].

點評 本題考查函數(shù)的零點和方程的根的關(guān)系,涉及函數(shù)單調(diào)性的判定,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知α,β為銳角,sinα=$\frac{\sqrt{2}}{10}$,sinβ=$\frac{\sqrt{10}}{10}$,則α+2β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.要得到函數(shù)$y=cos(4x-\frac{π}{4})$的圖象,只需將函數(shù)y=cos4x的圖象(  )
A.向左平移$\frac{π}{4}$個單位B.向右平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{16}$個單位D.向右平移$\frac{π}{16}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≥0}\\{-{x}^{2}-2x,x<0}\end{array}\right.$.
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)設(shè)函數(shù)f(x)在[t,t+4](t∈R)上的最大值為g(t),求g(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在四棱錐E-ABCD中,底面ABCD為梯形,AB∥CD,AB=2CD,M為AE的中點,設(shè)E-ABCD的體積為V,那么三棱錐M-EBC的體積為( 。
A.$\frac{1}{5}V$B.$\frac{2}{5}V$C.$\frac{1}{3}V$D.$\frac{2}{3}V$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=sinx-2$\sqrt{3}{sin^2}\frac{x}{2}$.
(I)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間$[{0,\frac{2π}{3}}]$上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.對任意非零實數(shù)a、b,定義一種運算:a?b,其結(jié)果y=a?b的值由如圖確定,則$({{{log}_2}8})?{({\frac{1}{2}})^{-2}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)已知橢圓的中心在原點,以坐標(biāo)軸為對稱軸,且長軸長是短軸長的3倍,并且經(jīng)過點P(3,0),求橢圓方程;
(2)與雙曲線x2-2y2=2有公共漸近線,且過點M(2,-2),求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知A={(x,y)|x+y=2},B={(x,y)|x-y=4},則A∩B=( 。
A.{3,-1}B.{x=3,y=-1}C.{(3,-1)}D.(3,-1)

查看答案和解析>>

同步練習(xí)冊答案