4.用數(shù)學(xué)歸納法證明:對于任意自然數(shù)n,數(shù)11n+2+122n+1是133的倍數(shù).

分析 用數(shù)學(xué)歸納法證明整除問題時分為兩個步驟,第一步,先證明當(dāng)n=0時,結(jié)論顯然成立,第二步,先假設(shè)假設(shè)當(dāng)n=k時結(jié)論成立,利用此假設(shè)結(jié)合因式的配湊法,證明當(dāng)n=k+1時,結(jié)論也成立即可.

解答 證明:(1)當(dāng)n=0時,110+2+120+1=133是133的倍數(shù),
(2)假設(shè)當(dāng)n=k時,11k+2+122k+1=133M,即是133的倍數(shù).
則n=k+1時,11k+3+122k+3=11(11k+2+122k+1)+133×122k+1
=133M+133×122k+1是133的倍數(shù).
由①②知,對于任意自然數(shù)n,數(shù)11n+2+122n+1是133的倍數(shù).

點評 本題主要考查數(shù)學(xué)歸納法,數(shù)學(xué)歸納法的基本形式:
設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1°P(n0)成立(奠基)
2°假設(shè)P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對一切大于等于n0的自然數(shù)n都成立

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓x2+y2-2x+4y+1=0,則原點O在( 。
A.圓內(nèi)B.圓外C.圓上D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若sinα=2cosα,則sin2α+2cos2α的值為$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若拋物線的焦點為(2,2),準(zhǔn)線方程為x+y-1=0,求此拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知拋物線y=4ax2(a≠0)的準(zhǔn)線方程為y=$\frac{1}{16}$,則a的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.己知函數(shù)f(x)=$\frac{\sqrt{3}}{2}sinωx$-${sin}^{2}\frac{ωx}{2}+\frac{1}{2}$(ω>0)的最小正周期為π.
(1)求ω的值;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時.求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l:y=x+b,橢圓C:x2+2y2=4.
(1)若直線和橢圓有兩個交點,求b的范圍;
(2)若直線被橢圓截得的弦長為$\frac{4}{3}$$\sqrt{2}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{\sqrt{3}}{3}$,以原點為圓心,橢圓短半軸長為半徑的圓與直線x-y+2=0相切,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求滿足下列條件的圓的方程:
(1)圓心在直線l:x-y+10=0上,過點(-5,0),半徑r=5;
(2)過點P(4,2),Q(-1,3),且圓在兩坐標(biāo)軸上的四個截距之和等于-10.

查看答案和解析>>

同步練習(xí)冊答案