A. | 函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)f(x)極值點(diǎn)的充要條件 | |
B. | 命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0” | |
C. | 命題“在銳角△ABC中,有 sinA>cosB”為真命題 | |
D. | “b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充分不必要條件 |
分析 根據(jù)充要條件的定義,可判斷A,D;寫出原命題的否定,可判斷B;根據(jù)誘導(dǎo)公式和三角函數(shù)的單調(diào)性,判斷C.
解答 解:函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f′(x0)=0時(shí),x0不一定是函數(shù)f(x)極值點(diǎn),
x0為函數(shù)f(x)極值點(diǎn)時(shí),f′(x0)=0成立,
綜上f′(x0)=0是x0為函數(shù)f(x)極值點(diǎn)的必要不充分條件,故A錯(cuò)誤;
命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1≥0”,故B錯(cuò)誤;
命題“在銳角△ABC中,A+B>$\frac{π}{2}$,則A>$\frac{π}{2}$-B,故sinA>sin($\frac{π}{2}$-B)=cosB”,故C正確;
“b=0”時(shí),“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”,“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”時(shí),“b=0”,
綜上“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件,故D錯(cuò)誤;
故選:C
點(diǎn)評(píng) 本題以命題的真假判斷和應(yīng)用為載體,考查了充要條件的定義,特稱命題的否定,誘導(dǎo)公式和三角函數(shù)的單調(diào)性,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1.5) | B. | (1.5,2) | C. | (2,2.5) | D. | (2.5,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1≤x<2} | B. | {x|0<x<1} | C. | {x|x≤0} | D. | {x|x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{4}{5})$ | B. | $(\frac{4}{5},+∞)$ | C. | $(\frac{4}{5},1)$ | D. | $(0,\frac{4}{5})$∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com