分析 根據(jù)直線間的兩兩垂直,盡力空間直角坐標(biāo)系,再求出平面PAB的法向量,最后利用向量的數(shù)量積求出線面的夾角的正弦值.
解答 解:∵底面ABCD是菱形,∠DAB=60°,點(diǎn)E、F分別為AB和PD中點(diǎn),
∴DE⊥DC,
∵PD⊥平面ABCD,∴以D為原點(diǎn),DE為x軸,DC為y軸,DP為z軸,建立空間直角坐標(biāo)系,
則 P(0,0,1),C(0,1,0),E($\frac{\sqrt{3}}{2}$,0,0),
A($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,0),B($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,0),
∴$\overrightarrow{AP}$=(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,1),$\overrightarrow{AB}$=(0,1,0).
設(shè)平面PAB的一個(gè)法向量為:$\overrightarrow{n}$=(x,y,z),.
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=y=0}\\{\overrightarrow{n}•\overrightarrow{AP}=-\frac{\sqrt{3}}{2}x+\frac{1}{2}y+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}=(1,0,\frac{\sqrt{3}}{2})$,
∵$\overrightarrow{PC}$=(0,1,-1),
∴設(shè)PC與平面PAB所成角為θ,
∴sinθ=|$\frac{\overrightarrow{PC}•\overrightarrow{n}}{|\overrightarrow{PC}|•|\overrightarrow{n}|}$|=|$\frac{-\frac{\sqrt{3}}{2}}{\sqrt{2}×\sqrt{1+\frac{3}{4}}}$|=$\frac{\sqrt{42}}{14}$.
∴PC平面PAB所成角的正弦值為$\frac{\sqrt{42}}{14}$.
點(diǎn)評(píng) 本題考查的知識(shí)要點(diǎn):線面平行的判定的應(yīng)用,空間直角坐標(biāo)系的建立,法向量的應(yīng)用,線面的夾角的應(yīng)用,主要考查學(xué)生的空間想象能力和應(yīng)用能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 5或7 | C. | 5 | D. | 5或6或7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-4,4] | B. | [-2,2] | C. | [-3,2] | D. | [2,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 90° | B. | 45° | C. | 60° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com