設(shè)變量x,y滿足約束條件
y-a≥0
x-5y+10≥0
x+y-8≤0
,且目標(biāo)函數(shù)z=2x-5y的最小值是-10,則a的值是
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出平面區(qū)域,∵目標(biāo)函數(shù)z=2x-5y的最小值是-10,
∴2x-5y=-10,
即對(duì)應(yīng)的平面區(qū)域在直線2x-5y=-10的下方,
2x-5y=-10
x-5y+10=0
,解得
x=0
y=2

即B(0,2),此時(shí)z=2x-5y取得最小值-10,
同時(shí)直線y=a也經(jīng)過點(diǎn)B(0,2),
由此可得a=2.
故答案為:2
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)取得最小值確定B的坐標(biāo)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩位同學(xué)參加2014年的自主招生考試,下火車后兩人共同提起一個(gè)行李包(如圖所示).設(shè)他們所用的力分別為
F1
,
F2
,行李包所受重力為
G
,若|
F1
|=|
F2
|=
2
2
|
G
|,則
F1
F2
的夾角θ的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
=(1,1),
b
=(-1,m),若
a
b
,則m等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊長分別為a,b,c,已知角A為銳角,且sin2A=4sinBsinC=(
sinB+sinC
m
)2
,則實(shí)數(shù)m范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x-
1
x
)6
的展開式的中間一項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等邊三角形的一個(gè)頂點(diǎn)在坐標(biāo)原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線y2=2x上,則該三角形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=3,則
3cosα+sinα
2cosα+sin(α+π)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),g(x)是定義在R上的奇函數(shù),且g(x)=f(x-1),則f(2013)+f(2015)的值為(  )
A、-1B、1C、0D、無法計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P在曲線y=
2
e2x+1
上,α為曲線在點(diǎn)P處的切線的傾斜角,則α的取值范圍是( 。
A、[0,
π
4
B、[
π
4
π
2
C、(
π
2
,
4
]
D、[
4
,π)

查看答案和解析>>

同步練習(xí)冊(cè)答案