考點(diǎn):數(shù)列與不等式的綜合
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用a
1=
,a
n=-2S
nS
n-1,代入計(jì)算,可得S
1,S
2,S
3;
(2)確定{
}是以2為首項(xiàng),2為公差的等差數(shù)列,可得S
n=
,即可求數(shù)列{a
n}的通項(xiàng)公式;
(3)S
n2=
<
(
-
)(n≥2),利用疊加法,即可得出結(jié)論.
解答:
(1)解:∵a
1=
,a
n=-2S
nS
n-1,
∴S
1=
,S
2=
,S
3=
;
(2)解:∵a
n=-2S
nS
n-1(n≥2),
∴S
n-S
n-1=-2S
nS
n-1,
∴
-
=2,
∴{
}是以2為首項(xiàng),2為公差的等差數(shù)列.
∴
=2n,
∴S
n=
,
∴n≥2時(shí),a
n=
,
∴a
n=
(3)證明:∵S
n2=
<
(
-
)(n≥2)
∴n≥2時(shí),S
12+S
22+S
32+…+S
n2<
+
(1-
+
-
+
-
)=
-
,
n=1時(shí),S
12=
-
,
綜上,S
12+S
22+S
32+…+S
n2≤
-
.
點(diǎn)評:本題考查數(shù)列的通項(xiàng)與求和,考查數(shù)列與不等式的綜合,考查學(xué)生分析解決問題的能力,確定數(shù)列的通項(xiàng)是關(guān)鍵.