已知數(shù)列{an}滿足:lgan=3n+5,求證:{an}是等比數(shù)列.
考點:等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等比數(shù)列的定義進行證明即可.
解答: 解:由lgan=3n+5,得an=103n+5
an+1
an
=
103(n+1)+5
103n+5
=1000=常數(shù).
∴{an}是等比數(shù)列.
點評:本題主要考查等比數(shù)列的判斷,根據(jù)條件求出數(shù)列的通項公式是解決本題的關(guān)鍵,比較基礎.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,A=60°,a2=bc,則△ABC內(nèi)角B=( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52},其中a1,a2,a3,a4,a5∈Z,設a1<a2<a3<a4<a5,且A∩B={a1,a4},a1+a4=10,又A∪B元素之和為224.求:
(1)a1,a4;      (2)a5;       (3)A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有兩個質(zhì)地均勻的骰子:其中一個是正四面體,各面分別標有數(shù)字1、2、3、4;另一個是正方體,各面分別標有數(shù)字1、2、3、4、5、6.
現(xiàn)有以下兩種游戲方案可供選擇:
方案一:連續(xù)拋擲正方體骰子三次,每次出現(xiàn)奇數(shù)得2張積分卡,出現(xiàn)偶數(shù)不得積分卡,
方案二:順次完成以下三步.
第一步:拋擲正方體骰子一次,出現(xiàn)不大于4的數(shù)字得2張積分卡,出現(xiàn)大于4的數(shù)字不得積分卡;
第二步:拋擲正四面體骰子一次,出現(xiàn)不大于3的數(shù)字得1張積分卡,出現(xiàn)大于3的數(shù)字不得積分卡;
第三步:拋擲正方體骰子一次,出現(xiàn)小于5的數(shù)字得2張積分卡,出現(xiàn)不小于5的數(shù)字不得積分卡.
(Ⅰ)求采用方案一所得到的總積分卡數(shù)X的分布列和數(shù)學期望;
(Ⅱ)為了得到更多的積分卡,你該選擇上述哪種方案?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有甲、乙兩個靶,某射手進行射擊訓練,每次射擊擊中甲靶的概率是p1,每次射擊擊中乙靶的概率是p2,其中p1>p2,已知該射手先后向甲、乙兩靶各射擊一次,兩次都能擊中與兩次都不能擊中的概率分別為
8
15
1
15
.該射手在進行射擊訓練時各次射擊結(jié)果互不影響.
(Ⅰ)求p1,p2的值;
(Ⅱ)假設該射手射擊乙靶三次,每次射擊擊中目標得1分,未擊中目標得0分.在三次射擊中,若有兩次連續(xù)擊中,而另外一次未擊中,則額外加1分;若三次全擊中,則額外加3分.記η為該射手射擊三次后的總的分數(shù),求η的分布列;
(Ⅲ)某研究小組發(fā)現(xiàn),該射手在n次射擊中,擊中目標的次數(shù)X服從二項分布.且射擊甲靶10次最有可能擊中8次,射擊乙靶10次最有可能擊中7次.試探究:如果X:B(n,p),其中0<p<1,求使P(X=k)(0≤k≤n)最大自然數(shù)k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+3x-10≤0}
(1)若集合B=[-2m+1,-m-1],且A∪B=A,求實數(shù)m的取值范圍;
(2)若集合B={x|-2m+1≤x≤-m-1},且A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由4名同學組成的志愿者招募宣傳隊,經(jīng)過初步選定,2名男同學,4名女同學共6名同學成為候選人,每位候選人當選宣傳隊隊員的機會是相同的.
(1)求當選的4名同學中恰有1名男同學的概率;
(2)求當選的4名同學中至少有3名女同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|-2≤x≤a,a≥-2},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},求使B∪C=B時a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-2x+mx-4=0上的兩點M、N關(guān)于直線2x+y=0對稱,直線l:tx+y-t+1=0(t∈R)與圓C相交于A、B兩點,則|AB|的最小值是
 

查看答案和解析>>

同步練習冊答案