在等比數(shù)列{an}中,若a1+a2=4,a3+a4=12,則a7+a8=( 。
A、16B、28C、32D、108
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)等比數(shù)列{an}的性質(zhì)可知,S2,S4-S2,S6-S4,S8-S6成等比數(shù)列,進(jìn)而根據(jù)a1+a2和a3+a4的值求得此新數(shù)列的首項(xiàng)和公比,進(jìn)而利用等比數(shù)列的通項(xiàng)公式求得S8-S6的值.
解答: 解:利用等比數(shù)列{an}的性質(zhì)有S2,S4-S2,S6-S4,S8-S6成等比數(shù)列,
∴S2=4,S4-S2=a3+a4=12,則S6-S4=36,S8-S6=108
故a7+a8=S8-S6=108.
故選:D.
點(diǎn)評(píng):本題主要考查等比數(shù)列的定義和性質(zhì),利用了 S2、S4-S2、S6-S4、S8-S6 也成等比數(shù)列,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>1,則函數(shù)y=x+
1
x-1
+5的最小值為( 。
A、8B、7C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件甲:x2+2x-3>0,條件乙:
1
x2+5x+6
>0,則條件甲是條件乙的(  )
A、充分而不必要的條件
B、必要而不充分的條件學(xué)科
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F,焦距為2c,左頂點(diǎn)為A,虛軸的上端點(diǎn)為B,若
BA
BF
=3ac,則該雙曲線的離心率為(  )
A、2+
2
B、2+
3
C、2-
5
D、2+
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三邊長(zhǎng)分別為4,5,6的三角形的形狀是( 。
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、以上答案均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體A-BCD的棱長(zhǎng)為a,且a∈{x|x2-6x+5≤0},則
AB
•(
AC
+
AD
)≥4的概率為( 。
A、
1
4
B、
1
2
C、
2
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合S={x|x2-px+q=0},T={x|x2-(p+3)x+6=0},且S∩T={3}
(1)求p,q的值;
(2)求S∪T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域和值域:
(1)y=2 (
1
x-1
)

(2)y=3
1-x
;
(3)y=5-x-1.
因?yàn)?-x>0,所以5-x-1>-1,所以函數(shù)的值域?yàn)椋?1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,sinx),
b
=(cos(2x+
π
3
),sinx),函數(shù)f(x)=
a
b
-
1
2
cos2x
(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,
π
3
]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案