設(shè){an}是等差數(shù)列,其前n項和是Sn,a3=6,S3=12.
(1)求數(shù)列{an}的通項公式;
(2)求
1
S1
+
1
S2
+…+
1
Sn
的值.
考點:數(shù)列的求和,等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件得
a1+2d=6
3a1+3d=12
,由此能求出an=2n.
(2)由(1)求出Sn=n2+n,從而得到
1
Sn
=
1
n2+n
=
1
n
-
1
n+1
,由此利用裂項求和法能求出
1
S1
+
1
S2
+…+
1
Sn
的值.
解答: 解:(1)∵{an}是等差數(shù)列,其前n項和是Sn,a3=6,S3=12,
a1+2d=6
3a1+3d=12
,解得a1=2,d=2,
∴an=2+(n-1)×2=2n.
(2)∵a1=2,d=2,
Sn=2n+
n(n-1)
2
×2
=n2+n,∴
1
Sn
=
1
n2+n
=
1
n
-
1
n+1

1
S1
+
1
S2
+…+
1
Sn

=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1
點評:本題考查數(shù)列的通項公式 的求法,考查數(shù)列的前n項和的求法,是中檔題,解題時要注意裂項求和法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

求數(shù)列{n×
1
2n
}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α、β∈(0,π),且tanα、tanβ是方程x2-5x+6=0的兩根.
①求α+β的值.
②求tan(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知:a,b,c都是正實數(shù),且ab+bc+ca=1,求證:a2+b2+c2≥1.
(2)若下列三個方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一個方程有實根,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

①對于數(shù)據(jù),求線性回歸直線方程,并計算x=4時y的估計值
x 0 1 2 3
y 1 3 5 7
②根據(jù)下列2×2聯(lián)表,使說明飲水與得病是否有關(guān)?
得病 不得病 總計
干凈水 10 70 80
不干凈水 10 30 40
總計 20 100 120
附表(如下)
p(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的底面邊長為2,側(cè)棱長為3
2
,點E在側(cè)棱AA1上,點F在側(cè)棱BB1上,D為線段CE上任意一點,且AE=2
2
,BF=
2

(I) 求證:C1E⊥FD;
(Ⅱ) 若D為線段CE的中點,求二面角C1-FD-E的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn與通項an滿足Sn=
1
2
-
1
2
an

(1)求數(shù)列{an}的通項公式;
(2)設(shè)f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=
1
b1
+
1
b2
+
1
bn
,求T2014;
(3)若cn=an•f(an),求{cn}的前n項和Un

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于下列命題:
①在△ABC中,若sin2A=sin2B,則△ABC為等腰三角形;
②在△ABC中,角A,B,C的對邊分別為a,b,c,若a=4,b=10,A=
π
6
,則△ABC有兩組解;
③設(shè)a=sin
2014π
3
,b=cos
2014π
3
,c=tan
2014π
3
,則a<b<c;
④將函數(shù)y=sin(3x+
π
4
)的圖象向左平移個
π
6
單位,得到函數(shù)y=cos(3x+
π
4
)的圖象.其中正確命題的編號是
 
.(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若在(2x-
2
2
9的展開式中第7項為672,則x的值是
 

查看答案和解析>>

同步練習冊答案