如圖,一根長為2米的木棒AB斜靠在墻壁AC上,∠ABC=60°,若AB滑動至DE位置,
AD=(
3
-
2
) 
米,問木棒AB中點O所經(jīng)過的路程為
 
米.
考點:軌跡方程
專題:
分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到CO=
1
2
AB=
1
2
DE=CO′,即O運動所經(jīng)過的路線是一段圓。辉赗t△ACB中,根據(jù)直角三角形三邊的關(guān)系得到∠ACO=30°,CA=
3
,則易求出CD=CA-DA=
2
,即可得到△DCE為等腰直角三角形,得到∠DEC=45°,則∠OCO′=∠DCO′-∠ACO=15°,然后根據(jù)弧長公式計算即可.
解答: 解:連接CO、CO′,如圖,

∵CA⊥CB,O為AB中點,O′為DE的中點,
∴CO=
1
2
AB=
1
2
DE=CO′,
∵AB=2,
∴CO=1,
當A端下滑B端右滑時,AB的中點O到C的距離始終為定長1,
∴O運動所經(jīng)過的路線是一段圓弧,
∵∠ABC=60°,
∴∠ACO=30°,CA=
3
,
∵AD=
3
-
2
,
CD=CA-AD=
3
-(
3
-
2
)=
2
,
∴sin∠DEC=
CD
DE
=
2
2
,
∴∠DEC=45°,
∴∠DCO′=45°
∴∠OCO′=∠DCO′-∠ACO=15°,
∴弧OO′的長=
15π
180
=
π
12
,
即O點運動到O′所經(jīng)過路線OO′的長為
π
12
點評:本題考查了動點的運動軌跡問題,解答的關(guān)鍵是明確AB中點在以C為圓心的圓弧上運動,考查了弧長公式及直角三角形中的邊角關(guān)系,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}、{bn}的每一項都是正數(shù),a1=8,b1=16,且an、bn、an+1成等差數(shù)列,bn、an+1、bn+1成等比數(shù)列,n=1,2,3,….
(Ⅰ)求a2、b2的值;
(Ⅱ)求數(shù)列{an}、{bn}的通項公式;
(Ⅲ)證明:對一切正整數(shù)n,有
1
a1-1
+
1
a2-1
+
1
a3-1
+…+
1
an-1
2
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

小明在做一道函數(shù)題時,不小心將一個分段函數(shù)的解析式污染了一部分,但是已知這個函數(shù)的程序框圖如圖所示,且當分別輸入數(shù)據(jù)-2,0 時,輸出的結(jié)果都是0.
(Ⅰ)求這個分段函數(shù)的解析式并計算f(f(-1));
(Ⅱ)若函數(shù)g(x)=f(x)-m有三個零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對稱中心為M(x0,y0),記函數(shù)f(x)的導函數(shù)為f′(x),f′(x)的導函數(shù)為f″(x),則有f″(x0)=0.若函數(shù)f(x)=x3-3x2,則可求得f(
1
2013
)+f(
2
2013
)+…+f(
4024
2013
)+f(
4025
2013
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)正項數(shù)列{an}的前n項和為Sn,且
an
2
,
Sn
2
,
an+1
2
數(shù)列n(∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
an
2n
數(shù)列{bn}中是否存在正整數(shù)對(m,n),當m<n時使得{bn}中的三項b1,bm,bn ,成等差數(shù)列.若存在,求出m,n;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=25-n,數(shù)列{bn}的通項公式為bn=n+k,設(shè)cn=
bn,anbn
ananbn
若在數(shù)列{cn}中,c5≤cn對任意n∈N*恒成立,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
x
 x≥0
-x
  x<0
,若f(a)+f(-1)=3,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,如果存在正實數(shù)k,使對任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,則稱函數(shù)f(x)為D上的“k型增函數(shù)”.已知f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=|x-a|-2a,若f(x)為R上的“2014型增函數(shù)”,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(n)=(
1+i
1-i
)
n-1
+(
1-i
1+i
)
n+1
(n∈Z),則f(2014)( 。
A、2B、-2C、2iD、-2i

查看答案和解析>>

同步練習冊答案