二次函數(shù)f(x)=x2+ax+b的圖象過(guò)點(diǎn)(0,2),且在x=1處切線的斜率為3.
(1)求函數(shù)的解析式;
(2)若函數(shù)f(x)的在區(qū)間[t,t+1]上不是單調(diào)函數(shù),求實(shí)數(shù)t的取值范圍;
(3)若對(duì)任意數(shù)的x1∈(0,1),x2∈(0,
1
2
),都有f(x1)+2<logax2,(a>0,a≠1)成立,求a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由已知可得f(0)=2,f′(1)=3,由此構(gòu)造方程組,求出a,b的值,可得函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)的在區(qū)間[t,t+1]上不單調(diào),則函數(shù)圖象的對(duì)稱軸在給定區(qū)間上,由此構(gòu)造關(guān)于t的不等式,解不等式可得實(shí)數(shù)t的取值范圍;
(3)若對(duì)任意的x1∈(0,1),x2∈(0,0.5),都有f(x1)+2<logax2(其中a>0且a≠1)成立,只須滿足logax2 不小于x∈(0,1)時(shí),f(x)+2=x2+x的上界,結(jié)合對(duì)數(shù)函數(shù)的單調(diào)性,可求出a的取值范圍.
解答: 解:(1)由二次函數(shù)f(x)=x2+ax+b的圖象過(guò)點(diǎn)(0,2)得:
f(0)=2,即b=2,
又∵在x=1處切線的斜率為3.
∴f′(1)=2+a=3,即a=1
∴f(x)=x2+x+2                         
(2)函數(shù)f(x)=x2+x+2圖象的開(kāi)口朝上,對(duì)稱軸為x=-0.5,
∴f(x)在區(qū)間(-∞,-0.5)上單減,在(-0.5,+∞)上單增.
若f(x)在上[t,t+1]不單調(diào),
則有t<-0.5<t+1,即-1.5<t<-0.5
∴實(shí)數(shù)t的取值范圍為(-1.5,-0.5).
(3)當(dāng)x1∈(0,1)時(shí),f(x1)+2=x12+x1+4
∵在x1∈(0,1)上單增
∴f(x1)+2∈(4,6)
要使對(duì)任意的x1∈(0,1),x2∈(0,0.5),都有f(x1)+2<logax2成立,
只須滿足6≤logax2,
當(dāng)0<a<1時(shí),logax2>loga0.5≥6,
∴解得
6
1
2
≤a<1.
綜上所述,a的取值范圍為[
6
1
2
,1).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,對(duì)數(shù)函數(shù)的性質(zhì),恒成立問(wèn)題,函數(shù)的值域,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從標(biāo)有數(shù)字3,4,5,6,7的五張卡片中任取2張不同的卡片,事件A=“取到2張卡片上數(shù)字之和為偶數(shù)”,事件B=“取到的2張卡片上數(shù)字都為奇數(shù)”,則P(B|A)=( 。
A、
1
4
B、
3
10
C、
3
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示(單位長(zhǎng)度為:cm):

(1)求該幾何體的體積;    
(2)求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
5
3
,3an+1=an+2.n∈N*
(Ⅰ)求證:數(shù)列{an-1}為等比數(shù)列;
(Ⅱ)若a1+a2+…+an<100,求最大的正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幼兒園小班的美術(shù)課上,老師帶領(lǐng)小朋友們用水彩筆為美術(shù)本上如右圖所示的兩個(gè)大小不同的氣球涂色,要求一個(gè)氣球只涂一種顏色,兩個(gè)氣球分別涂不同的顏色.該班的小朋友牛,F(xiàn)可用的有暖色系水彩筆紅色、橙色各一支,冷色系水彩筆綠色,藍(lán)色,紫色各一支.
(1)牛牛從他可用的五支水彩筆中隨機(jī)的取出兩支按老師要求為氣球涂色,問(wèn)兩個(gè)氣球同為冷色的概率是多大?
(2)一般情況下,老師發(fā)出開(kāi)始指令到涂色活動(dòng)全部結(jié)束需要10分鐘.牛牛至少需要2分鐘完成該項(xiàng)任務(wù).老師在發(fā)出開(kāi)始指令1分鐘后隨時(shí)可能來(lái)到牛牛身邊查看涂色情況.問(wèn)當(dāng)老師來(lái)到牛牛身邊時(shí)牛牛已經(jīng)完成任務(wù)的概率是多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

常州公交公司為了調(diào)整302線路發(fā)車的時(shí)間間隔,在某站點(diǎn)對(duì)乘客進(jìn)行了候車時(shí)間的調(diào)查,以下是候車時(shí)間的頻率分布表和頻率分布直方圖.
候車時(shí)間(分鐘) 頻數(shù) 頻率
[0,4) 4 0.2
[4,8) 8 0.4
[8,12) y
[12,16) z
[16,20] 0.05
合計(jì) x 1
(1)求實(shí)數(shù)x,y,z的值;
(2)補(bǔ)全頻率分布直方圖;
(3)估計(jì)乘客在該站點(diǎn)的平均候車時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cosxcos(
2
+x)+
3
(2cos2x-1)
(1)求f(x)的最大值;
(2)若
π
12
<x<
π
3
,且f(x)=
1
2
,求cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,為了估計(jì)陰影部分的面積,向邊長(zhǎng)為6的正方形內(nèi)隨機(jī)投擲800個(gè)點(diǎn),恰有200個(gè)點(diǎn)落在陰影部分內(nèi),據(jù)此,可估計(jì)陰影部分的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一批材料可以建成長(zhǎng)為4Lm(L為常數(shù))的圍墻,如果用材料在一邊靠墻(墻的長(zhǎng)度足夠長(zhǎng))的地方圍成一塊矩形場(chǎng)地,中間用同樣的材料隔成3個(gè)面積相等的矩形,則圍成矩形的面積的最大值為
 
m2

查看答案和解析>>

同步練習(xí)冊(cè)答案