現(xiàn)有6名男生和4名女生,根據(jù)要求回答下列問題,(結(jié)果可用排列組合數(shù)或數(shù)字回答)
(1)10人站成一排,甲乙兩名男生站在一起的排法有多少種?
(2)10人站成一排,任何兩名女生都不相鄰的排法有多少種?
(3)10人站成一排,男甲不站首位,男乙不站末位的排法有多少種?
(4)現(xiàn)從10人中抽取5人去參加課外社會實踐活動,其中至少有3名女生參加的抽法有多少種?
考點:排列、組合及簡單計數(shù)問題
專題:應(yīng)用題,排列組合
分析:(1)甲乙兩名男生站在一起,利用捆綁法;
(2)任何2名女生都不相鄰,利用插空法;
(3)利用直接法或間接法,可得結(jié)論;
(4)至少有3名女生參,包括3名或4名兩種情況,可得結(jié)論.
解答: 解:(1)甲乙兩名男生站在一起,利用捆綁法,可得甲乙兩名男生站在一起的排法有
A
9
9
A
2
2

(2)任何兩名女生都不相鄰,利用插空法,可得任何兩名女生都不相鄰的排法有
A
6
6
A
4
7

(3)利用直接法或間接法,可得男甲不站首位,男乙不站末位的排法有
A
9
9
+
A
1
8
A
1
8
A
8
8
A
10
10
-2
A
9
9
+
A
8
8
;(4)至少有3名女生參,包括3名或4名兩種情況,可得至少有3名女生參加的抽法有
C
3
4
C
2
6
+
C
4
4
C
1
6
點評:本題考查排列知識的運用,考查捆綁法,插空法,間接法的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax(a∈R)
(1)若f(x)為R上的單調(diào)遞增函數(shù),求a的值;
(2)若x∈[1,3]時,f(x)的最小值為4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)=
1
3
x3+bx2+cx+d(b,c,d∈R)在x=±1處有極值,且其圖象過點(0,3)
(Ⅰ)求函數(shù)y=f(x)的解析式:
(Ⅱ)設(shè)函數(shù)g(x)=f′(x)+4lnx-6x+1,若函數(shù)y=g(x)的圖象與直線y=m有三個不同的交點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4x+a+3,g(x)=mx+5-2m,(m∈R,A∈R)
(Ⅰ)求函數(shù)y=f(x)在區(qū)間[a,a+1]上的最小值;
(Ⅱ)當(dāng)a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,多面體ABCPQ中,PA⊥平面ABC,PA=AB,△ABC是等腰直角三角形,∠BAC=90°,△QBC是等邊三角形,M是BC的中點,二面角Q-BC-A的正切值為-
2

(Ⅰ)證明:PQ∥平面ABC;
(Ⅱ)在線段QM上是否存在一點N,使得PN⊥平面QBC,如果存在,請求出N點的位置,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩運動員分別對一目標(biāo)射擊一次,甲射中的概率為0.8,乙射中的概率為0.9,求:
(1)兩人都射中的概率;
(2)兩人中恰有一人射中的概率;
(3)兩人中至少有一人射中的概率;
(4)兩人中至多有一人射中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

α、β均為銳角,sinα=
5
13
,cosβ=
4
5
,則sin(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x3-3x-t|(x∈[-2,2])的最大值為
5
2
,則實數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=2”是直線ax+2y+1=0和直線3x+(a+1)y-1=0平行的
 
條件.(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中選擇一個填空)

查看答案和解析>>

同步練習(xí)冊答案