如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(Ⅰ)求直線EC與平面ABE所成角的正切值;
(Ⅱ)線段EA上是否存在點(diǎn)F,使EC∥平面FBD?存在請(qǐng)確定具體位置,不存在說(shuō)明理由.
考點(diǎn):直線與平面所成的角,直線與平面平行的判定
專(zhuān)題:空間角
分析:(Ⅰ)根據(jù)線面所成角的定義,即可求直線EC與平面ABE所成角的正切值;
(Ⅱ)建立空間直角坐標(biāo)系,利用向量法結(jié)合EC∥平面FBD,即可得到結(jié)論.
解答: 解:(Ⅰ)∵平面ABCD⊥平面ABE,且交線AB,BC⊥AB,BC?平面ABCD,
∴BC⊥平面ABE,
則∠CEB是直線EC與平面ABE所成角,
∵在等腰三角形ABE中,AB=2,
∴EB=EA=
2
,
在直角三角形CBE中,tan∠CEB=
BC
BE
=
1
2
=
2
2
,
∴直線EC與平面ABE所成角的正切值為
2
2

(Ⅱ)設(shè)O為AB的中點(diǎn),連接OD,OE,則OE⊥AB,
∵平面ABCD⊥平面ABE,
∴OE⊥平面ABE,OE⊥OD,
在直角梯形ABCD,由CD=OB,CD∥OB,可得OD⊥AB,
由OB,OD,OE兩兩垂直,建立空間直角坐標(biāo)系O-xyz,
假設(shè)線段EA上存在點(diǎn)F,使EC∥平面FBD,
設(shè)
n
=(x,y,z)是平面PBD的一個(gè)法向量,則必需使
EC
n

∵E(0,0,1),C(1,-1,0),B(0,-1,0),D(1,0,0)
EC
=(1,-1,-1),
BD
=(1,1,0)

設(shè)F(0,a,1-a)
DF
=(-1,a,1-a)
,
n
DF
=0
n
BD
=0
,得
-x+ya+z(1-a)=0
x+y=0

令x=1,則
n
=(1,-1,
1+a
1-a
)

要使
EC
n
,則有1+1+
1+a
1-a
=0
,∴a=
1
3

此時(shí)F(0,
1
3
2
3
),
EF
=(0,
1
3
,-
1
3
),
EA
=(0,1,-1)

EF
=
1
3
EA

則線段EA上存在點(diǎn)F,且是靠近點(diǎn)E的一個(gè)三等分點(diǎn).
點(diǎn)評(píng):本題主要考查直線和平面所成角的計(jì)算,以及線面平行的判斷,建立空間坐標(biāo)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,問(wèn):m在什么范圍取值時(shí),函數(shù)g(x)=x3+x2[
m
2
+f′(x)],當(dāng)且僅當(dāng)在x=1處取得極值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱柱ABC-A1B1C1中,平面A1ABB1⊥平面ABC,O是AB的中點(diǎn).
(Ⅰ)在線段CC1上是否存在點(diǎn)D,使得OD∥平面A1C1B,若存在,證明你的結(jié)論;若不存在,說(shuō)明理由;
(Ⅱ)若AA1=A1B=AC=BC,AA1與平面ABC所成的角為
π
4
,求二面角O-A1C1-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB為圓O的直徑,PA、PC是圓O的切線,A、C為切點(diǎn),∠BAC=30°,PB交圓O于點(diǎn)D.
(1)求∠APC的大;
(2)若PA=
21
,求PD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上的點(diǎn)到橢圓右焦點(diǎn)F的最大距離為
3
+1,離心率e=
3
3
,直線l過(guò)點(diǎn)F與橢圓C交于A,B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有
OP
=
OA
+
OB
成立?若存在,求出所有點(diǎn)P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)主要生產(chǎn)甲、乙兩種品牌的空調(diào),由于受到空調(diào)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每臺(tái)空調(diào)的利潤(rùn)與該空調(diào)首次出現(xiàn)故障的時(shí)間有關(guān),甲、乙兩種品牌空調(diào)的保修期均為3年,現(xiàn)從該廠已售出的兩種品牌空調(diào)中各隨機(jī)抽取50臺(tái),統(tǒng)計(jì)數(shù)據(jù)如下:
品牌
首次出現(xiàn)故障時(shí)間
x年
0<x≤11<x≤22<x≤3x>30<x≤22<x≤3x>3
空調(diào)數(shù)量(臺(tái))124432345
每臺(tái)利潤(rùn)(千元)122.52.71.52.62.8
將頻率視為概率,解答下列問(wèn)題:
(Ⅰ)從該廠生產(chǎn)的甲品牌空調(diào)中隨機(jī)抽取一臺(tái),求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(Ⅱ)若該廠生產(chǎn)的空調(diào)均能售出,記生產(chǎn)一臺(tái)甲品牌空調(diào)的利潤(rùn)為X1,生產(chǎn)一臺(tái)乙品牌空調(diào)的利潤(rùn)為X2,分別求X1,X2的分布列;
(Ⅲ)該廠預(yù)計(jì)今后這兩種品牌空調(diào)銷(xiāo)量相當(dāng),但由于資金限制,只能生產(chǎn)其中一種品牌空調(diào),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該生產(chǎn)哪種品牌的空調(diào)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+blnx(x>0,實(shí)數(shù)a,b為常數(shù)),若a+b=-2,且b<1,討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,
(1)求證:AD1⊥平面CDA1B1;
(2)求直線BD與平面CDA1B1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)f(x)=kx-2滿足f(2)-f(0)=6.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函數(shù)g(x)=f(x)+f(
1
x
)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案