若存在過(guò)點(diǎn)(1,1)的直線與曲線y=x2+x和y=ax2-x-1都相切,則a等于( 。
A、-1或-3B、-2或3
C、-1或3D、1或-3
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:設(shè)出所求切線方程的切點(diǎn)坐標(biāo)和斜率,把切點(diǎn)坐標(biāo)代入曲線方程得到一個(gè)等式,根據(jù)切點(diǎn)坐標(biāo)和斜率寫(xiě)出切線的方程,把切點(diǎn)坐標(biāo)代入又得到一個(gè)等式,聯(lián)立方程組即可求出切點(diǎn)的橫坐標(biāo),進(jìn)而得到切線的斜率,根據(jù)已知點(diǎn)的坐標(biāo)和求出的斜率寫(xiě)出切線方程,再根據(jù)與y=y=ax2-x-1相切,聯(lián)立方程組,△=0可求出所求.
解答: 解:設(shè)直線與曲線y=x2+x的切點(diǎn)坐標(biāo)為(x0,y0),
y0=x02+x0
y0-1
x0-1
=2x0+1
,則切線的斜率k=1或k=5,
若k=1,此時(shí)切線的方程為y=x,
由y=x與y=ax2-x-1,消去y,可得ax2-2x-1=0,
其中△=0,解可得a=-1;
若k=5,其切線方程為y=5x-4,
由y=5x-4與y=ax2-x-1,消去y可得ax2-6x+3=0,
又由△=0,即36-12a=0,
解可得a=3.
故a=3或-1.
故選:C.
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的幾何意義,以及利用導(dǎo)數(shù)求曲線上過(guò)某點(diǎn)切線方程的斜率,會(huì)根據(jù)一點(diǎn)坐標(biāo)和斜率寫(xiě)出直線的方程,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(x 
3
2
+x 
1
3
n的展開(kāi)式中各項(xiàng)系數(shù)和是256,則展開(kāi)式中x5的系數(shù)是
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
i+1
1-i
的共軛復(fù)數(shù)是( 。
A、2B、iC、-iD、-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c分別是△ABC中角A,B,C的對(duì)邊邊長(zhǎng),且lgsinA,lgsinB,lgsinC成等差數(shù)列,則直線l1:xsin2A+ysinA-a=0與直線l2:xsin2B+ysinC-c=0的位置關(guān)系是( 。
A、平行B、重合
C、垂直D、相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)對(duì)任意x∈R滿足f(x)+1=
1
f(x+1)
,且x∈(0,1)時(shí),f(x)=x,g(x)=f(x)-mx-m在(-1,0)∪(0,1)上有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A、(-1,1)
B、(0,
1
2
C、(0,1)
D、(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,復(fù)數(shù)
-5+i
2-3i
的模為( 。
A、0
B、1
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l1過(guò)點(diǎn)A(2,-1)和點(diǎn)B(3,2),直線l2的傾斜角是直線l1的傾斜角的兩倍,則直線l2的斜率為(  )
A、-6
B、-
3
5
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

《九章算術(shù)》之后,人們進(jìn)一步用等差數(shù)列求和公式來(lái)解決更多的問(wèn)題,《張丘建算經(jīng)》卷上第22題為:“今有女善織,日益功疾(注:從第2天開(kāi)始,每天比前一天多織相同量的布),第一天織5尺布,現(xiàn)在一月(按30天計(jì)),共織390尺布”,則從第2天起每天比前一天多織( 。┏卟迹
A、
1
2
B、
8
15
C、
16
31
D、
16
29

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,底面ABCD是邊長(zhǎng)為4的正方形,ED⊥平面ABCD,ED=2,EF∥BD,且2EF=BD.
(1)求證:BF⊥AC:
(2)求幾何體ABCDEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案