若將6本不同書放到5個不同盒子里,有多少種不同放法( 。
A、
A
6
6
B、
C
6
6
C、56
D、65
考點:分步乘法計數(shù)原理
專題:計算題,排列組合
分析:將6本不同書放到5個不同盒子里,每本書都有5種放法,根據(jù)乘法原理可得結論.
解答: 解:將6本不同書放到5個不同盒子里,每本書都有5種放法,
根據(jù)乘法原理可得不同放法為56種.
故選:C.
點評:本題考查分步乘法計數(shù)原理,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將5名大學畢業(yè)生全部分配給3所不同的學校,不同的分配方式的種數(shù)有( 。
A、8B、15C、125D、243

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若等差數(shù)列{an}滿足:
a11
a12
<-1,且其前n項和Sn有最大值.則當數(shù)列Sn>0時,n的值為( 。
A、20B、21C、23D、22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:
a
b
?存在唯一的實數(shù)λ∈R,使得
b
a

②|
a
b
|≤|
a
|•|
b
|
③(
a
b
)•
c
=
a
•(
b
c

a
b
共線,
b
c
共線,則
a
c
共線
⑤若
a
b
=
b
c
b
≠0,則
a
=
c
,
其中正確命題序號是( 。
A、①②⑤B、②C、②⑤D、①④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=ax+a+4,若f′(1)=2,則a等于( 。
A、1B、-2C、2D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

收集一只棉鈴蟲的產(chǎn)卵數(shù)y與溫度X的幾組數(shù)據(jù)后發(fā)現(xiàn)兩個變量有相關關系,并按不同的曲線來擬合y與X之間的回歸方程,算出對應相關指數(shù)R2如下表:
則這組數(shù)據(jù)模型的回歸方程的最好選擇應是(  )
擬合曲線 直  線 指數(shù)曲線 拋 物 線 二次曲線
y與x回歸方程
?
y
=19.8x-463.7
?
y
=e0.27x-3.84
?
y
=0.367x2-202
?
y
=
(x-0.78)2-1
相關指數(shù)R2 0.746 0.996 0.902 0.002
A、
?
y
=19.8x-463.7
B、
?
y
=e0.27x-3.84
C、
?
y
=0.367x2-202
D、
?
y
=
(x-0.78)2-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC與△DBC都是邊長為2的等邊三角形,且平面ABC⊥平面DBC,過點A作PA⊥平面ABC,且AP=2
3

(1)求證:PA∥平面DBC;
(2)求直線PD與平面DBC所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=(1+x)2-2ln(1+x).
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若關于x的方程f(x)=x2+x+a在[0,2]上恰有兩個相異實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2
2
,且過點A(
3
2
,
1
2
).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知l:y=kx-1,是否存在k使得點A關于l的對稱點B(不同于點A)在橢圓C上?若存在求出此時直線l的方程,若不存在說明理由.

查看答案和解析>>

同步練習冊答案