如圖是某幾何體的三視圖,則其體積為
 

考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:幾何體是正方體切去一個(gè)
1
4
圓柱和三棱柱余下的部分,根據(jù)三視圖判斷圓柱的底面半徑切去的三棱柱底面三角形的形狀及相關(guān)幾何量的數(shù)據(jù),把數(shù)據(jù)代入體積公式計(jì)算.
解答: 解:由三視圖知:幾何體是正方體切去一個(gè)
1
4
圓柱和三棱柱余下的部分,
其中切去的
1
4
圓柱的高為2,底面半徑為1;
切去的三棱柱的高為2,底面是直角邊長(zhǎng)分別為1和2的直角三角形,
∴幾何體的體積V=(2×2-
1
4
π-
1
2
×1×2)×2=6-
π
2

故答案為:6-
π
2
點(diǎn)評(píng):本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,滿足(c-2a)cosB+bcosC=0.
(1)求角B的大。
(2)若a=2,cosA=
1
7
,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若滿足sinBsinC-cosBcosC-
3
2
=0.
(1)求角A的大小;
(2)現(xiàn)給出下列三個(gè)條件:
①a=1;②2c-(
3
+1)b=0;③B=45°.
試從中再選擇兩個(gè)條件以確定△ABC,求出你所確定的△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}為等差數(shù)列,a1>0,a6+a7>0,a6•a7<0,則使其前n項(xiàng)和Sn>0成立的最大自然數(shù)n是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A、B、C的對(duì)邊,且c2+ab=a2+b2,則角C的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
π
2
<α<β<π,且sinα=
5
5
,sinβ=
10
10
,則α+β=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=
3
3
x+1與橢圓
x2
3
+
y2
2
=1相交于A,B兩點(diǎn).則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知D是△ABC的邊BC上的點(diǎn),Sn是等差數(shù)列{an}的前n項(xiàng)和,且
AD
=a3
AB
+a2012
AC
,則S2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若函數(shù)f(x)=
x
x+2
(x>0),且f1(x)=f(x)=
x
x+2
,當(dāng)n∈N*且n≥2時(shí),fn(x)=f[fn-1(x)],猜想fn(x)(n∈N*)的表達(dá)式
 

(2)用反證法證明命題“若a,b∈N,ab能被3整除,那么a,b中至少有一個(gè)能被3整除“時(shí),假設(shè)應(yīng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案