10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{cosπx,(x>0)}\\{f(x+1)-1,(x<0)}\end{array}\right.$,則$f(-\frac{4}{3})$的值為( 。
A.-$\frac{5}{2}$B.-$\frac{3}{2}$C.-$\frac{{\sqrt{3}}}{2}$-2D.$\frac{{\sqrt{3}}}{2}$-2

分析 由分段函數(shù)的性質(zhì)得$f(-\frac{4}{3})$=f(-$\frac{1}{3}$)-1=f($\frac{2}{3}$)-2=cos$\frac{2π}{3}$-2,由此利用三角函數(shù)的性質(zhì)能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{cosπx,(x>0)}\\{f(x+1)-1,(x<0)}\end{array}\right.$,
∴$f(-\frac{4}{3})$=f(-$\frac{1}{3}$)-1=f($\frac{2}{3}$)-2
=cos$\frac{2π}{3}$-2
=-cos$\frac{π}{3}$-2
=-$\frac{5}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)和三角函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在數(shù)列{an}中,a1=2,an+1=an+$\frac{1}{n(n+1)}$,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求f(x)=$\frac{1}{x-2}$+x+1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.將下列各根式寫成分?jǐn)?shù)指數(shù)冪的形式:
(1)$\root{5}{9}$;
(2)$\sqrt{\frac{3}{2}}$;
(3)$\frac{1}{\root{4}{{5}^{3}}}$;
(4)$\root{3}{{a}^{4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若集合A={x∈N|$\frac{x-2}{x}$≤0},B={x∈Z|$\sqrt{x}$≤2},則滿足條件A⊆C?B的集合C的個(gè)數(shù)為(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.正方體ABCD-A1B1C1D1中,B1D與BC1夾角的大小是90°;若E、F分別為AB、CC1的中點(diǎn),則異面直線EF與A1C1夾角的大小是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.直線x+(1+m)y=2-m和直線mx+2y+8=0平行,則m的值為( 。
A.1B.-2C.1或-2D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)全集為R,A={x|3<x<10},B={x|2≤x<7},求CR(A∪B)及(CRA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,$b=\sqrt{7}$,$c=\sqrt{3}$,$B=\frac{π}{6}$,那么a等于4.

查看答案和解析>>

同步練習(xí)冊(cè)答案