分析 (1)運(yùn)用對(duì)數(shù)函數(shù)的定義域,解不等式即可得到所求定義域;
(2)運(yùn)用對(duì)數(shù)的運(yùn)算性質(zhì)和對(duì)數(shù)函數(shù)的單調(diào)性和二次函數(shù)的最值,即可得到所求最值.
解答 解:(1)由題意可得$\left\{\begin{array}{l}{1-x>0}\\{p+x>0}\end{array}\right.$,
即有$\left\{\begin{array}{l}{x<1}\\{x>-p}\end{array}\right.$,由p>-1,可得-p<1,
即有-p<x<1,則函數(shù)的定義域?yàn)椋?p,1);
(2)f(x)=lg(1-x)+lg(1+x)=lg(1-x2),(-a<x≤a),
令t=1-x2,(-a<x≤a),y=lgt,為遞增函數(shù).
由t的范圍是[1-a2,1],
當(dāng)x=a時(shí),y=lgt取得最小值lg(1-a2),
故存在x=a,函數(shù)f(x)取得最小值,且為lg(1-a2).
點(diǎn)評(píng) 本題考查函數(shù)的定義域和最值的求法,注意運(yùn)用函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | 25 | D. | 5$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=-$\sqrt{x+1}$ | B. | f(x)=${(\frac{1}{2})}^{x}$ | C. | f(x)=lnx+2 | D. | f(x)=x+$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 2或$\frac{3}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 當(dāng)x>0且x≠1時(shí),lgx+$\frac{1}{lgx}$≥2 | B. | 當(dāng)x>0且x≠1時(shí),$\sqrt{x}$+$\frac{1}{\sqrt{x}}$≥2 | ||
C. | 當(dāng)x≥3時(shí),x+$\frac{1}{x}$的最小值是$\frac{10}{3}$ | D. | 當(dāng)0<x≤1時(shí),x-$\frac{1}{x}$無(wú)最大值 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com