如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E是A1B1的中點(diǎn),則下列四個(gè)命題:
①點(diǎn)E到平面ABC1D1的距離是
1
2
;
②直線BC與平面ABC1D1所成角等于45°;
③空間四邊形ABCD1在正方體六個(gè)面內(nèi)的射影的面積最小值為
1
2
;
④BE與CD1所成角的正弦值為
10
10

其中真命題的編號(hào)是
 
(寫出所有真命題的編號(hào)).
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:空間位置關(guān)系與距離
分析:EE到面ABC1D1的距離等于B1到面ABC1D1的距離為
1
2
B1C=
2
2
;BC與面ABC1D1所成的角即為∠CBC1=45°;在四個(gè)面上的投影或?yàn)檎叫位驗(yàn)槿切危钚槿切危?I>BE與CD1所成的角即為BEBA1所成的角.
解答: 解:①EA1B1A1B1∥面ABC1D1,?
E到面ABC1D1的距離等于B1到面ABC1D1的距離為
1
2
B1C=
2
2
.∴①不正確.?
BC與面ABC1D1所成的角即為∠CBC1=45°,∴②正確.?
③在四個(gè)面上的投影或?yàn)檎叫位驗(yàn)槿切危?br />最小為三角形,面積為
1
2
,∴③正確.?
BECD1所成的角即為BEBA1所成的角,
即∠A1BE,A1E=
1
2
,A1B=2,BE=
5
2
,?
cos∠A1BE=
3
10
10
.∴sin∠A1BE=
10
10
.∴④正確.
故答案為:②③④.?
點(diǎn)評(píng):本題考查命題的真假判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,直線l分別經(jīng)過橢圓長(zhǎng)軸和短軸的一個(gè)頂點(diǎn),且與圓C:x2+y2=
2
3
相切,
(Ⅰ)求橢圓E的方程;
(Ⅱ)P為圓C上任意一點(diǎn),以P為切點(diǎn)作圓C的切線與橢圓E相交于點(diǎn)M,N,求線段|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF1的中點(diǎn)在y軸上,若∠PF1F2=30°,則橢圓C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(3,1,5),
b
=(1,2,-3),向量c與z軸垂直,且滿足
c
a
=9,
c
b
=-4,則
c
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F,過點(diǎn)F作與x軸垂直的直線l交兩漸近線于A、B兩點(diǎn),且與雙曲線在第一象限的交點(diǎn)為P,設(shè)O為坐標(biāo)原點(diǎn),若
.
OP
.
OA
.
OB
(λ,μ∈R),λμ=
3
16
,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=3x+1與曲線y=xex+bx+1相切,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從4名同學(xué)中選出3人,參加一項(xiàng)活動(dòng),則不同的選方法有
 
種(用數(shù)據(jù)作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(3x-
1
x
6的展開式中,常數(shù)項(xiàng)等于
 
;二項(xiàng)式系數(shù)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),若雙曲線左支上存在一點(diǎn)M使
F1M
•(
OM
+
OF1
)=0,O坐標(biāo)原點(diǎn),且|
MF1
|=
3
3
|
MF2
|,則該雙曲線的離心率為( 。
A、
3
+1
B、
3
+1
2
C、
6
+
2
D、
6
+
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案