7.在△ABC中,a=2,b=3,A=$\frac{π}{6}$,則cosB的值為( 。
A.$\frac{\sqrt{7}}{4}$B.$\frac{4}{5}$C.±$\frac{\sqrt{7}}{4}$D.±$\frac{4}{5}$

分析 直接利用正弦定理以及同角三角函數(shù)的基本關(guān)系式化簡求解即可.

解答 解:在△ABC中,a=2,b=3,A=$\frac{π}{6}$,則sinB=$\frac{bsinA}{a}$=$\frac{3×\frac{1}{2}}{2}$=$\frac{3}{4}$.
cosB=$±\sqrt{1-{sin}^{2}B}$=$±\frac{\sqrt{7}}{4}$.
故選:C.

點(diǎn)評 本題考查正弦定理是應(yīng)用,同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)A={3},B={3,5},則下列表達(dá)關(guān)系不正確的是( 。
A.A?BB.A⊆BC.3∈BD.5⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)A,B在拋物線上,且滿足∠AFB=$\frac{2π}{3}$,過弦AB的中點(diǎn)P作拋物線準(zhǔn)線的垂線PM,垂足為M,則$\frac{|PM|}{|AB|}$的最大值為(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.(文)已知△ABC中,cosA=a,sinB=$\frac{4}{5}$,當(dāng)a滿足條件0時(shí),cosC具有唯一確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(Ⅰ)計(jì)算:1.5${\;}^{-\frac{1}{3}}$×(-$\frac{7}{6}$)0+80.25×$\root{4}{2}$+($\root{3}{2}$×$\sqrt{3}$)6-$\sqrt{(\frac{2}{3})^{\frac{2}{3}}}$的值.
(Ⅱ)計(jì)算:lg22•lg250+lg25•lg40的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)y=f(x)的定義域?yàn)镽,則“f(0)=0”是“函數(shù)f(x)為奇函數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列各組函數(shù)中,f(x)與g(x)表示同一個(gè)函數(shù)的是( 。
A.$f(x)=x,g(x)=\sqrt{x^2}$B.$f(x)=x,g(x)=\root{3}{x^3}$
C.f(x)=x,g(x)=(x-1)0D.$f(x)=\frac{{{x^2}-9}}{x+3},g(x)=x-3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若$f(x)=\frac{1}{{{2^x}-1}}+a$是奇函數(shù),且函數(shù)$g(x)={log_a}[m{x^2}-(m+5)x+12]$在[1,3]上為增函數(shù),則m的取值范圍是$\frac{1}{2}$<m≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.化簡:$\frac{cos(\frac{5}{2}π-α)cos(3π-α)tan(-α-π)}{tan(4π-α)sin(5π+α)}$.

查看答案和解析>>

同步練習(xí)冊答案