有一個自來水廠,蓄水池原有水450噸.水廠每小時可向蓄水池注水80噸,同時蓄水池又向居民小區(qū)供水,t小時內(nèi)供水量為320
t
噸.現(xiàn)在開始向池中注水并同時向居民供水.問多少小時后蓄水池中水量最少?并求出最少水量.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:先根據(jù)題意設(shè)t小時后蓄水池內(nèi)水量為y噸,得出蓄水池中水量y關(guān)于t的函數(shù)關(guān)系式,再利用配方法求出此函數(shù)的最小值即可.
解答: 解:設(shè)t小時后蓄水池內(nèi)水量為y噸,…(1分)
根據(jù)題意,得y=450+80t-320
t
         …(5分)
=80(
t
-2)2+130-------10 分
t
=2,即t=4時,y取得最小值是130.(11分)
∴4小時后蓄水池中的水量最少,為130噸.…(12分)
點(diǎn)評:本小題主要考查函數(shù)模型的選擇與應(yīng)用,解決實(shí)際問題通常有四個步驟:(1)閱讀理解,認(rèn)真審題;(2)引進(jìn)數(shù)學(xué)符號,建立數(shù)學(xué)模型;(3)利用數(shù)學(xué)的方法,得到數(shù)學(xué)結(jié)果;(4)轉(zhuǎn)譯成具體問題作出解答,其中關(guān)鍵是建立數(shù)學(xué)模型.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)實(shí)數(shù)t>0,求證:(1+
2
t
)ln(1+t)>2
(2)從編號1到100的100張卡片中,每次隨機(jī)地抽取一張,然后放回,用這種方式連續(xù)抽20次,設(shè)抽得的20個號碼各不相同的概率為p,求證:ρ<
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=(log0.25x)2-log0.25x2+5在x∈[2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出判斷輸入數(shù)x,若x是正數(shù),輸出它的平方,若不是,輸出它的相反數(shù)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個計算n(n∈N*)個數(shù)2,
3
2
,
4
3
,
5
4
,…,
n+1
n
的和的程序框圖,請完成該圖的程序框:
(Ⅰ)請?jiān)趫D中判斷框內(nèi)(1)處和執(zhí)行框中的(2)處填上合適的語句,使之能完成該題算法功能;
(Ⅱ)根據(jù)程序框圖寫出程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}為等差數(shù)列,首項(xiàng)為3且a1+a2+a3=15,數(shù)列{bn}的前n項(xiàng)和為Sn,b1=1,bn+1=2Sn+1,(n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式
(2)求數(shù)列{bn}的通項(xiàng)公式
(3)設(shè)cn=anbn,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
x-1
x+1

(1)判斷f(x)的奇偶性,并證明;
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-x-1.
(Ⅰ)若函數(shù)g(x)=-ex+x+a+1,x∈[-1,ln
4
3
]有唯一零點(diǎn),求a的取值范圍;
(Ⅱ)當(dāng)x≥0時,f(x)≥(t-1)x恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校對高三年級的學(xué)生進(jìn)行體檢,現(xiàn)將高三男生的體重(單位:kg)數(shù)據(jù)進(jìn)行整理后分成六組,并繪制頻率分布直方圖(如圖).已知圖中從左到右第一、第六小組的頻率分別為0.16,0.07,第一、第二、第三小組的頻率成等比數(shù)列,第三、第四、第五、第六小組的頻率成等差數(shù)列,且第三小組的頻數(shù)為100,則該校高三年級的男生總數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案