利用函數(shù)的單調(diào)性比較大。
(1)sin508°與sin144°;         
(2)cos760°與cos(-770°)
(3)tan(-
π
5
)與tan(-
7
).
考點(diǎn):正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的求值
分析:分別由誘導(dǎo)公式化簡(jiǎn),由正弦函數(shù)y=sinx,余弦函數(shù)y=cosx,正切函數(shù)y=tanx的單調(diào)性可得.
解答: 解:(1)sin508°=sin(360°+148°)=sin148°
∵正弦函數(shù)y=sinx在(
π
2
,π)上單調(diào)遞減,
∴sin148°<sin144°,
∴sin508°<sin144°;         
(2)cos760°=cos(720°+40°)=cos40°,
cos(-770°)=cos770°=cos50°,
∵余弦函數(shù)y=cosx在(0,π)上單調(diào)遞減,
∴cos40°>cos50°,
∴cos760°>cos(-770°),;
(3)∵正切函數(shù)y=tanx在(-
π
2
,
π
2
)上單調(diào)遞增,
-
π
2
<-
7
-
π
5
π
2
,
∴tan(-
π
5
)>tan(-
7
).
點(diǎn)評(píng):本題考查三角函數(shù)的單調(diào)性,涉及誘導(dǎo)公式的應(yīng)用,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:2x+y-m=0和圓C:x2+y2=5,求m為何實(shí)數(shù)時(shí)
(1)直線l與圓C無(wú)公共點(diǎn)?
(2)圓C截直線l所得的弦長(zhǎng)為2?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}滿足b1=1,且bn+1=bn+2
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

投資商到一開(kāi)發(fā)區(qū)投資72萬(wàn)元建起一座蔬菜加工廠,第一年共支出12萬(wàn)元,以后每年支出增加4萬(wàn)元,從第一年起每年蔬菜銷售收入50萬(wàn)元.設(shè)f(n)表示前n年的純利潤(rùn)總和(f(n)=前n年的總收入一前n年的總支出一投資額).
(1)該廠從第幾年開(kāi)始盈利?
(2)若干年后,投資商為開(kāi)發(fā)新項(xiàng)目,對(duì)該廠有兩種處理方案:①年平均純利潤(rùn)達(dá)到最大時(shí),以48萬(wàn)元出售該廠;②純利潤(rùn)總和達(dá)到最大時(shí),以10萬(wàn)元出售該廠,問(wèn)哪種方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P1(x1,y1),P2(x2,y2)是以原點(diǎn)O為圓心的單位圓上的兩點(diǎn),∠P1OP2=θ(θ為鈍角).若sin(θ+
π
4
)=
3
5
,則x1x2+y1y2的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a4=5,a2+a8=14,數(shù)列{bn}滿足b1=1,bn+1=2 an+3•bn
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{
1
log2bn+1
}的前n項(xiàng)和;
(3)若cn=an•(
2
 an+1,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)(1,
2
2
),離心率為
2
2
,左、右焦點(diǎn)分別為F1、F2.點(diǎn)P為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜線分別為k1、k2.證明:
1
k1
-
3
k2
=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an=
Sn
n
+2 (n-1)(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫(xiě)出an和Sn關(guān)于n的表達(dá)式;
(2)是否存在自然數(shù)n,使得S1+
S2
2
+
S3
3
+…+
Sn
n
-(n-1)2=2013?若存在,求出n的值;若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)Cn=
2
n(an+7)
(n∈{N*}),Tn=c1+c2+c3+…+cn(n∈N*),是否存在最大的整數(shù)m,使得對(duì)任意n∈N*均有Tn
m
32
成立?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)A(2,3),且離心率e=
1
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在過(guò)點(diǎn)B(0,-4)的直線l交橢圓于不同的兩點(diǎn)M、N,且滿足
OM
ON
=
16
7
(其中點(diǎn)O為坐標(biāo)原點(diǎn)),若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案