(Ⅰ)已知a是實數(shù),i是虛數(shù)單位,
(a-i)(1-i)
i
是純虛數(shù),求a的值;
(Ⅱ)設(shè)z=
(1-4i)(1+i)+2+4i
3+4i
,求|z|.
考點:復(fù)數(shù)求模,復(fù)數(shù)的基本概念,復(fù)數(shù)代數(shù)形式的乘除運算
專題:計算題,數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(Ⅰ)先化簡
(a-i)(1-i)
i
,由純虛數(shù)的定義可求a值;
(Ⅱ)先化簡z,然后可求模;
解答: 解:(Ⅰ)
(a-i)(1-i)
i
=
(a-i)(1-i)(-i)
i(-i)
=-(a+1)+(1-a)i,
(a-i)(1-i)
i
是純虛數(shù),
∴-(a+1)=0,1-a≠0,即a=-1;
(Ⅱ)z=
(1-4i)(1+i)+2+4i
3+4i
=
7+i
3+4i
=
(7+i)(3-4i)
(3+4i)(3-4i)
=
25-25i
25
=1-i,
|z|=
12+(-1)2
=
2
點評:該題考查復(fù)數(shù)代數(shù)形式的乘除運算、復(fù)數(shù)的基本概念,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

與直線3x+4y-5=0關(guān)于x軸對稱的直線的方程為( 。
A、3x-4y+5=0
B、3x+4y-5=0
C、4x+3y-5=0
D、4x+3y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:sin12°cos18°+cos12°sin18°=( 。
A、
1
2
B、
3
2
C、
2
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-x.
(1)當(dāng)a=1時,求f(x)的極值;
(2)若f(x)≤a對x∈[1,+∞]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

據(jù)民生所望,相關(guān)部門對所屬服務(wù)單位進(jìn)行整治性核查,規(guī)定:從甲類3個指標(biāo)項中隨機(jī)抽取2項,從乙類2個指標(biāo)項中隨機(jī)抽取1項.在所抽查的3個指標(biāo)項中,3項都優(yōu)秀的獎勵10萬元;只有甲類2項優(yōu)秀的獎勵6萬元;甲類只有一項優(yōu)秀,乙類1項優(yōu)秀的提出警告,有2項或2項以上不優(yōu)秀的停業(yè)運營并罰款8萬元.已知某家服務(wù)單位甲類3項指標(biāo)項中有2項優(yōu)秀,乙類2項指標(biāo)項中有1項優(yōu)秀,求:
(Ⅰ)這家單位受到獎勵的概率;
(Ⅱ)這家單位這次整治性核查中所獲金額的均值(獎勵為正數(shù),罰款為負(fù)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z的共軛復(fù)數(shù)為
.
z
,已知(1+2i)
.
z
=4+3i,
(1)求復(fù)數(shù)z及
z
.
z
;
(2)求滿足|z1-1|=|z|的復(fù)數(shù)z1對應(yīng)的點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表給出了從某校500名12歲男生中用簡單隨機(jī)抽樣得出的120人的身高資料(單位:厘米):
分組 人數(shù) 頻率
[122,126) 5 0.042
[126,130) 8 0.067
[130,134) 10 0.083
[134,138) 22 0.183
[138,142) y
[142,146) 20 0.167
[146,150) 11 0.092
[150,154) x 0.050
[154,158) 5 0.042
合計 120 1.00
(1)在這個問題中,總體是什么?
(2)求表中x與y的值,畫出頻率分布直方圖及頻率分布折線圖;
(3)試計算身高在146~154cm的總?cè)藬?shù)約有多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中點P為y=f′(x)的圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)求曲線段
ABC
與x軸所圍成的區(qū)域的面積
(2)若|AC|=
π
3
,點P的坐標(biāo)為(0,
3
3
2
),且ω>0,0<ω<
π
2
,求y=f(x)在區(qū)間[0,
π
3
]的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定積分
1
-1
(sin3x+x3)dx等于
 

查看答案和解析>>

同步練習(xí)冊答案