已知數(shù)列{an}的前n項和Sn=3•(
3
2
n-1-1(n∈N*),數(shù)列{bn}滿足bn=
an+1
log
3
2
an+1
(n∈N*).
(1)求數(shù)列{an}的通項公式,并說明{an}是否為等比數(shù)列;
(2)求數(shù)列{
1
bn
}的前n項和前Tn
考點:數(shù)列與函數(shù)的綜合
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)再寫一式,兩式相減,可得an=(
3
2
)n-1
,由此可求數(shù)列{an}通項公式,從而判斷{an}不是等比數(shù)列;
(2)確定
1
bn
=n•(
2
3
)n
,利用錯位相減求和即可
解答: 解:(1)n=1時,a1=S1=2;
n≥2時,Sn-1=3•(
3
2
n-2-1,
兩式相減可得an=(
3
2
)n-1
,
∴an=
2,n=1
(
3
2
)n-1,n≥2

∴{an}不是等比數(shù)列;
(2)bn=
an+1
log
3
2
an+1
=
1
n
(
3
2
)n

1
bn
=n•(
2
3
)n
,
∴Tn=
2
3
+2•(
2
3
)2
+…+n•(
2
3
)n
,
2
3
Tn=(
2
3
)2
+2•(
2
3
)3
+…+(n-1)•(
2
3
)n
+n•(
2
3
)n+1
,
兩式相減整理可得Tn=6-(6+2n)•(
2
3
)n
點評:本題主要考查了利用數(shù)列的遞推公式求解通項公式,數(shù)列的錯位相減求和方法的應(yīng)用是求和的重點,要注意掌握
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(
π
4
+α)=3,則tanα=( 。
A、
1
2
B、1
C、
1
4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,母線長為2的圓錐PO中,已知AB是半徑為1的⊙O的直徑,點C在AB弧上,D為AC的中點.
(1)求圓錐PO的表面積;
(2)證明:平面ACP⊥平面POD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在四棱錐P-ABCD中,底面ABCD是菱形,O是AC,BD的交點,PA=PC,PB=PD,E是PC上一點.求證:
(1)PO⊥AB;
(2)平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡
1+sinx
cosx
sin2x
2cos2(
π
4
-
x
2
)

(2)一個扇形的面積為1,周長為4,則中心角的弧度數(shù)為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax3-
3
2
(a+2)x2+6x-3,x∈R,a是常數(shù),且a>0
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)在x=1時取得極大值,且直線y=-1與函數(shù)f(x)的圖象有三個交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b都是實數(shù),且a≠0,f(x)=|x-1|+|x-2|.
(1)求不等式f(x)>2的解集;
(2)若f(x)≤
|a+b|+|a-b|
|a|
對滿足條件的所有實數(shù)a,b都成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=-sin2x-acosx+2,是否存在實數(shù)a,使得函數(shù)的最小值為-2,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-mx+m)•ex(m∈R).
(Ⅰ)若函數(shù)f(x)存在零點,求實數(shù)m的取值范圍;
(Ⅱ)當m<0時,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案