15.將角α的終邊順時針旋轉$\frac{π}{2}$,則它與以原點為圓心,1為半徑的單位圓的交點的坐標是( 。
A.(cosα,sinα)B.(cosα,-sinα)C.(sinα,-cosα)D.(sinα,cosα)

分析 由題意,設坐標為(x,y),則x=cos((α-$\frac{π}{2}$)=sinα,y=sin(α-$\frac{π}{2}$)=-cosα,即可得出結論.

解答 解:由題意,設坐標為(x,y),則x=cos((α-$\frac{π}{2}$)=sinα,y=sin(α-$\frac{π}{2}$)=-cosα,
故選C.

點評 本題考查三角函數(shù)的定義,考查誘導公式的運用,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知定點A(4,0),P點是圓x2+y2=4上一動點,Q點是AP的中點,求Q點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{f(x+6),x≤0}\end{array}\right.$,則f(-8)的值是( 。
A.-2B.2C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若a>b>1,$θ∈(0,\frac{π}{2})$,則( 。
A.asinθ<bsinθB.absinθ<basinθ
C.alogbsinθ<blogasinθD.logasinθ<logbsinθ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設a=sin$\frac{13π}{5}$,$b=cos(-\frac{2π}{5})$,c=tan$\frac{7π}{5}$,則( 。
A.b<a<cB.b<c<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上為增函數(shù),且f(-1)=$\frac{1}{2}$,若實數(shù)a滿足f(loga3)+f(${log_a}\frac{1}{3}$)≤1,則實數(shù)a的取值范圍為a≥3,或0<a≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知偶函數(shù)f(x)的定義域是R,且f(x)在(0,+∞)是增函數(shù),則a=f(-2),b=f(π),c=f(-3)的大小關系是( 。
A.a<c<bB.b<a<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F(xiàn)、G分別是AC、BC中點.
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E-AB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0))的右焦點為(2$\sqrt{2}$,0),且過點c>1.
(Ⅰ)求橢圓Γ的標準方程;
(Ⅱ)設直線l:y=x+m(m∈R)與橢圓Γ交于不同兩點A、B,且|AB|=3$\sqrt{2}$.若點P(x0,2)滿足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求x0的值.

查看答案和解析>>

同步練習冊答案