12.y=2sin($\frac{x}{2}$+$\frac{π}{3}$)的值域?yàn)閇-2,2],當(dāng)y取最大值時(shí),x=4kπ+$\frac{π}{3}$(k∈Z);當(dāng)y取最小值時(shí),x=4kπ-$\frac{5π}{3}$(k∈Z),周期為4π,單調(diào)遞增區(qū)間為[4kπ-$\frac{5π}{3}$,4kπ+$\frac{π}{3}$](k∈Z);單調(diào)遞減區(qū)間為[4kπ+$\frac{π}{3}$,4kπ+$\frac{7π}{3}$](k∈Z).

分析 令$\frac{x}{2}$+$\frac{π}{3}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],解得x∈[4kπ-$\frac{5π}{3}$,4kπ+$\frac{π}{3}$],單調(diào)增區(qū)間[4kπ-$\frac{5π}{3}$,4kπ+$\frac{π}{3}$](k∈Z);令$\frac{x}{2}$+$\frac{π}{3}$∈[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],解得x∈[4kπ+$\frac{π}{2}$,4kπ+$\frac{7π}{3}$],單調(diào)減區(qū)間[4kπ+$\frac{π}{3}$,4kπ+$\frac{7π}{3}$](k∈Z);

解答 解:y=2sin($\frac{x}{2}$+$\frac{π}{3}$)的值域?yàn)閇-2,2],最小正周期T=$\frac{2π}{\frac{1}{2}}$=4π,
當(dāng)$\frac{x}{2}$+$\frac{π}{3}$=2kπ+$\frac{π}{2}$,解得x=4kπ+$\frac{π}{3}$(k∈Z)時(shí),函數(shù)取得最大值2,
當(dāng)$\frac{x}{2}$+$\frac{π}{3}$=2kπ-$\frac{π}{2}$,解得x=4kπ-$\frac{5π}{3}$(k∈Z)時(shí),函數(shù)取得最小值-2,
下面求單調(diào)區(qū)間:
令$\frac{x}{2}$+$\frac{π}{3}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],解得x∈[4kπ-$\frac{5π}{3}$,4kπ+$\frac{π}{3}$],
即函數(shù)的單調(diào)增區(qū)間為:[4kπ-$\frac{5π}{3}$,4kπ+$\frac{π}{3}$](k∈Z);
再令$\frac{x}{2}$+$\frac{π}{3}$∈[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],解得x∈[4kπ+$\frac{π}{2}$,4kπ+$\frac{7π}{3}$],
即函數(shù)的單調(diào)減區(qū)間為:[4kπ+$\frac{π}{3}$,4kπ+$\frac{7π}{3}$](k∈Z);
故答案為:[-2,2];4kπ+$\frac{π}{3}$(k∈Z);4kπ-$\frac{5π}{3}$(k∈Z);4π;
[4kπ-$\frac{5π}{3}$,4kπ+$\frac{π}{3}$](k∈Z);[4kπ+$\frac{π}{3}$,4kπ+$\frac{7π}{3}$](k∈Z).

點(diǎn)評(píng) 本題主要考查了三角函數(shù)的圖象和性質(zhì),涉及值域,最小正周期,單調(diào)性和單調(diào)區(qū)間,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知扇形的周長(zhǎng)為8cm,則該扇形的面積S值最大時(shí)圓心角的大小為(  )
A.4弧度B.3弧度C.2弧度D.1弧度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分圖象如圖所示,則函數(shù)解析式為y=4sin($\frac{π}{8}$x-$\frac{3π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)a=1og34,b=1og43,c=1og32,則a,b,c的大小關(guān)系為a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(x)=|x+1|+|x-1|,不等式f(x)<4解集為M
(1)求M;
(2)若不等式f(x)+a<0有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.y=-2sinx+1,x∈[-$\frac{π}{2}$,π]的值域?yàn)閇-1,3],當(dāng)y取最大值時(shí),x=-$\frac{π}{2}$;當(dāng)y取最小值時(shí),x=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)△ABC的面積S=$\frac{^{2}+{c}^{2}-{a}^{2}}{4}$,角A,B,C所對(duì)的邊為a,b,c且c=$\sqrt{2}$a.
(1)求角C的大;
(2)若△ABC內(nèi)一點(diǎn)P滿足AP=AC,BP=CP,求∠PAC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知拋物線C:y=$\frac{1}{4}$x2的焦點(diǎn)為F,點(diǎn)P為拋物線C上一個(gè)動(dòng)點(diǎn),過點(diǎn)P且與拋物線C相切的直線記為l.
(1)求F的坐標(biāo);
(2)當(dāng)點(diǎn)P在何處時(shí),點(diǎn)F到直線L的距離最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)$\overrightarrow{e}$是非零向量,若$\overrightarrow{a}$+$\overrightarrow$=2$\overrightarrow{e}$,2$\overrightarrow{a}$-$\overrightarrow$=-3$\overrightarrow{e}$,向量$\overrightarrow{a}$與$\overrightarrow$是否平行?

查看答案和解析>>

同步練習(xí)冊(cè)答案