7.有限集合S中所有的元素的乘積稱為數(shù)集S的“積數(shù)”,若集合M={$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$…,$\frac{1}{99}$,$\frac{1}{100}$}.
(1)試求M的所有子集的“積數(shù)”之和;
(2)試求M的所有偶數(shù)個元素的子集的“積數(shù)”之和.

分析 令f(x)=(x+$\frac{1}{2}$)(x+$\frac{1}{3}$)(x+$\frac{1}{4}$)…(x+$\frac{1}{99}$)(x+$\frac{1}{100}$),
(1)則集合M={$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$…,$\frac{1}{99}$,$\frac{1}{100}$}所有子集的“積數(shù)”之和即f(x)展開式中所有項數(shù)之和T-1,
(2)M的所有偶數(shù)個元素的子集的“積數(shù)”之和,即f(x)展開式中所有偶次項數(shù)之和S.

解答 解:(1)令f(x)=(x+$\frac{1}{2}$)(x+$\frac{1}{3}$)(x+$\frac{1}{4}$)…(x+$\frac{1}{99}$)(x+$\frac{1}{100}$),
則集合M={$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$…,$\frac{1}{99}$,$\frac{1}{100}$}所有子集的“積數(shù)”之和即f(x)展開式中所有項數(shù)之和T-1,
令x=1,則T=$\frac{3}{2}$•$\frac{4}{3}$•$\frac{5}{4}$•…•$\frac{100}{99}$•$\frac{101}{100}$=$\frac{101}{2}$,
∵$\frac{101}{2}$-1=$\frac{99}{2}$,
∴M的所有子集的“積數(shù)”之和為$\frac{99}{2}$,
(2)M的所有偶數(shù)個元素的子集的“積數(shù)”之和,
即f(x)展開式中所有偶次項數(shù)之和S,
令x=1,則T=(-$\frac{1}{2}$)•(-$\frac{2}{3}$)•(-$\frac{3}{4}$)•…•(-$\frac{98}{99}$)•(-$\frac{99}{100}$)=-$\frac{1}{100}$,
由$\frac{\frac{101}{2}-\frac{1}{100}}{2}$=$\frac{5049}{200}$得;
M的所有偶數(shù)個元素的子集的“積數(shù)”之和為$\frac{5049}{200}$.

點評 本題考查的知識點是元素與集合關(guān)系的判定,函數(shù)展開式的系數(shù)問題,轉(zhuǎn)化困難,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,A(-1,2),B(4,-2),C(3,7),試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如果f(x)=$\left\{\begin{array}{l}{-2,}&{x>0}\\{0,}&{x=0}\\{2,}&{x<o(jì)}\end{array}\right.$ 那么f[f(-5)]=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$,DE∥BC,且DE與AC相交于點E,M是BC的中點,AM與DE相交于點N,若$\overrightarrow{AN}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),則x+y等于(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若點A(1,3)關(guān)于直線y=kx+b的對稱點B(-2,1),則k+b=$\frac{11}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知M={-1,1,2,3},則冪函數(shù)y=xα(α∈M)的圖象不經(jīng)過(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.判斷函數(shù)y=$\frac{{a}^{x}-1}{{a}^{x}+1}+ln\frac{{a}^{x}-1}{{a}^{x}+1}$的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=$\frac{1}{\sqrt{lo{g}_{3}(4x-3)}}$的定義域為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在等差數(shù)列{an}中,若a8=-3,a10=1,則an=2n-19.

查看答案和解析>>

同步練習(xí)冊答案