設(shè)函數(shù)f(x)=ex+x2-a(a∈R,e為自然對(duì)數(shù)的底數(shù)),若存在b∈[0,1]使f(f(b))=b成立,則a的取值范圍是
 
考點(diǎn):指數(shù)型復(fù)合函數(shù)的性質(zhì)及應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用反函數(shù)將問(wèn)題進(jìn)行轉(zhuǎn)化,再將解方程問(wèn)題轉(zhuǎn)化為函數(shù)的圖象交點(diǎn)問(wèn)題.
解答: 解:∵存在b∈[0,1],使f(f(b))=b成立
∴存在b∈[0,1],使f(b)=f-1(b)
即函數(shù)f(x)與其反函數(shù)f-1(x)在[0,1]上有交點(diǎn)
∵f(x)=ex+x2-a在[0,1]上為增函數(shù)
∴函數(shù)f(x)與其反函數(shù)f-1(x)在[0,1]的交點(diǎn)在直線y=x上,
即函數(shù)f(x)與其反函數(shù)f-1(x)的交點(diǎn)就是f(x)與y=x的交點(diǎn)
令:ex+x2-a=x,則方程在[0,1]上一定有解
∴a=ex+x2-x
設(shè)g(x)=ex+x2-x
則g′(x)=ex+2x-1>0在[0,1]上恒成立,
∴g(x)=ex+x2-x在[0,1]上遞增
∴a=g(x)≥g(0)=1,
g(x)≤g(1)=1+e;
綜上可知,1≤a≤1+e
故答案為:1≤a≤1+e.
點(diǎn)評(píng):本題主要考察了復(fù)合函數(shù)的性質(zhì),綜合性較強(qiáng),屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正數(shù)a、b、c、d滿足
c
-
d
a
-
b
>0,a+b=c+d,試將a,b,c,d按從小到大的順序排列并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某四棱錐的三視圖如圖所示,該四棱錐的側(cè)面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
4
-
y2
b2
=1的右焦點(diǎn)F與拋物線y2=12x的焦點(diǎn)重合,過(guò)雙曲線的右焦點(diǎn)F作其漸近線垂線,垂足為M.則點(diǎn)M的縱坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
logax(x≥1)
-ax2+(2a+1)x-3(x<1)
(a<0)且a≠1,如果對(duì)任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
e1
=
a
+5
b
,
e2
=3
a
-2
b
e3
=-6
a
+4
b
,
a
b
不共線,其中共線的是( 。
A、
e1
e2
B、
e2
e3
C、
e1
e3
D、
e1
、
e2
e3
兩兩不共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

各項(xiàng)都是正數(shù)的等比數(shù)列{an}的公比q≠1,且a2,
1
2
a3,a1成等差數(shù)列,則
a3+a4+a5
a4+a5+a6
的值為( 。
A、
1-
5
2
B、
5
+1
2
C、
5
-1
2
D、
5
+1
2
5
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a<b”是“(
1
4
)a
>(
1
4
)b
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a2=-1,a4=5,則{an}的前5項(xiàng)和S5=( 。
A、10B、7C、20D、25

查看答案和解析>>

同步練習(xí)冊(cè)答案