相關(guān)習(xí)題
 0  209706  209714  209720  209724  209730  209732  209736  209742  209744  209750  209756  209760  209762  209766  209772  209774  209780  209784  209786  209790  209792  209796  209798  209800  209801  209802  209804  209805  209806  209808  209810  209814  209816  209820  209822  209826  209832  209834  209840  209844  209846  209850  209856  209862  209864  209870  209874  209876  209882  209886  209892  209900  266669 

科目: 來源: 題型:

在四棱錐P-ABCD中,AD∥BC,∠ABC=∠APB=90°,點(diǎn)M是線段AB上的一點(diǎn),且PM⊥CD,AB=BC=2PB=2AD=4BM.
(1)證明:面PAB⊥面ABCD;
(2)求平面PAB與平面PCD的二面角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

如圖,ABCD是邊長為2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=
1
2
BD.
(1)求證:BF∥平面ACE;
(2)求證:平面EAC⊥平面BDEF
(3)求幾何體ABCDEF的體積.

查看答案和解析>>

科目: 來源: 題型:

已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,acosC+
asinC
3
-b=0.
(Ⅰ)求A;
(Ⅱ)若△ABC的面積為
3
,求bsinB+csinC的最小值.

查看答案和解析>>

科目: 來源: 題型:

如圖E、F、G、H分別是空間四邊形ABCD的邊AB、BC、CD、DA的中點(diǎn).
(1)求證:四邊形EFGH為平行四邊形.
(2)若AC與BD滿足什么條件時(shí),四邊形EFGH為菱形,試證明你的結(jié)論.
(3)求證:AC∥平面EFGH.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知點(diǎn)F為拋物線C1:y2=4x的焦點(diǎn),過點(diǎn)F任作兩條互相垂直的直線l1,l2,分別交拋物線C1于A,C,B,D四點(diǎn),E,G分別為AC,BD的中點(diǎn).
(Ⅰ)當(dāng)直線AC的斜率為2時(shí),求直線EG的方程;
(Ⅱ)直線EG是否過定點(diǎn)?若過,求出該定點(diǎn);若不過,說明理由.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知圓G:x2+y2-2x-
2
y=0,經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F及上頂點(diǎn)B,過圓外一點(diǎn)(m,0)(m>a)傾斜角為
6
的直線l交橢圓于C,D兩點(diǎn),
(Ⅰ)求橢圓的方程;
(Ⅱ)若右焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,AB是圓O的直徑,PA垂直于圓所在的平面,C是圓周上的點(diǎn).
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2
2
,AC=2,PA=2,求二面角C-PB-A的度數(shù).

查看答案和解析>>

科目: 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,直線l分別經(jīng)過橢圓長軸和短軸的一個(gè)頂點(diǎn),且與圓C:x2+y2=
2
3
相切,
(Ⅰ)求橢圓E的方程;
(Ⅱ)P為圓C上任意一點(diǎn),以P為切點(diǎn)作圓C的切線與橢圓E相交于點(diǎn)M,N,求線段|MN|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

(1)已知α是第三角限的角,化簡
1+sinα
1-sinα
-
1-sinα
1+sinα

(2)已知α∈(
π
2
,π)且sin(π-α)+cos(2π+α)=
2
3
,求sin3
2
-α)+cos3
π
2
-α)的值.

查看答案和解析>>

科目: 來源: 題型:

如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A、B的點(diǎn),直線PC⊥平面ABC,E,F(xiàn)分別為PA,PC的中點(diǎn).
(Ⅰ)記平面BEF與平面ABC的交線為l,試判斷l(xiāng)與平面PAC的位置關(guān)系,并加以說明;
(Ⅱ)設(shè)(Ⅰ)中的直線l與圓O的另一個(gè)交點(diǎn)為D,且點(diǎn)Q滿足
DQ
=
1
2
CP
,記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的銳角為α,二面角E-l-C的大小為β,
①求證:sinθ=sinα•sinβ.
②當(dāng)點(diǎn)C為弧AB的中點(diǎn)時(shí),PC=AB,求直線DQ與平面BEF所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案