相關習題
 0  211184  211192  211198  211202  211208  211210  211214  211220  211222  211228  211234  211238  211240  211244  211250  211252  211258  211262  211264  211268  211270  211274  211276  211278  211279  211280  211282  211283  211284  211286  211288  211292  211294  211298  211300  211304  211310  211312  211318  211322  211324  211328  211334  211340  211342  211348  211352  211354  211360  211364  211370  211378  266669 

科目: 來源: 題型:

已知函數f(x)=(x-1)2+alnx,a∈R.
(1)求函數f(x)的單調區(qū)間;
(2)求證:“0<a<
4
9
”是函數f(x)有三個零點的必要條件.

查看答案和解析>>

科目: 來源: 題型:

已知點A(0,-2),橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,F是橢圓E的右焦點,直線AF的斜率為
2
3
3
,O為坐標原點.
(Ⅰ)求E的方程;
(Ⅱ)設過點A的動直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=(x-1)lnx,g(x)=x3+(a-1)x2-ax.
(1)求函數f(x)在[t,t+
1
2
](t>0)上的最小值;
(2)是否存在整數a,使得對任意x∈[1,+∞),(x+1)f(x)≤g(x)恒成立,若存在,求a的最小值,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖),雙曲線C1
x2
a2
-
y2
b2
=1過點P且離心率為
3

(Ⅰ)求C1的方程;
(Ⅱ)若橢圓C2過點P且與C1有相同的焦點,直線l過C2的右焦點且與C2交于A,B兩點,若以線段AB為直徑的圓過點P,求l的方程.

查看答案和解析>>

科目: 來源: 題型:

已知矩陣A=
0
1
3
1-
2
3
,求點M(-1,1)在矩陣A-1對應的變換作用下得到的點M′坐標.

查看答案和解析>>

科目: 來源: 題型:

如圖,正方形AMDE的邊長為2,B,C分別為AM,MD的中點,在五棱錐P-ABCDE中,F為棱PE的中點,平面ABF與棱PD,PC分別交于點G,H.
(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE,求直線BC與平面ABF所成角的大小,并求線段PH的長.

查看答案和解析>>

科目: 來源: 題型:

(1)已知a>1,b<1,求證:a+b>1+ab;
(2)已知x1,x2,…,xn∈R+且x1x2…xn=1,求證:(
2
+x1)(
2
+x2)…(
2
+xn)≥(
2
+1)n

查看答案和解析>>

科目: 來源: 題型:

在數列{an}中,已知a1=4,an+1=3an-4n+2(n∈N*).
(Ⅰ)記bn=an-2n,試判斷數列求數列{bn}是等差數列還是等比數列?并證明你的判斷;
(Ⅱ)求數列{an}的前項和Sn

查看答案和解析>>

科目: 來源: 題型:

已知函數f(x)=x3+3|x-a|(a∈R).
(Ⅰ)若f(x)在[-1,1]上的最大值和最小值分別記為M(a),m(a),求M(a)-m(a);
(Ⅱ)設b∈R,若[f(x)+b]2≤4對x∈[-1,1]恒成立,求3a+b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點為A,B,離心率為
3
2
,過左焦點垂直于x軸的直線被橢圓E截得的線段長為1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若點P是圓x2+y2=4上一動點,且在x軸上方,連接PA交橢圓E于點D,已知點C(1,0),設直線PB,DC的斜率分別為k1,k2,且k1=λk2,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案