相關(guān)習(xí)題
 0  212263  212271  212277  212281  212287  212289  212293  212299  212301  212307  212313  212317  212319  212323  212329  212331  212337  212341  212343  212347  212349  212353  212355  212357  212358  212359  212361  212362  212363  212365  212367  212371  212373  212377  212379  212383  212389  212391  212397  212401  212403  212407  212413  212419  212421  212427  212431  212433  212439  212443  212449  212457  266669 

科目: 來源: 題型:

函數(shù)y=f(x)的定義域為R,若存在常數(shù)M>0,使得|f(x)|≥M|x|對一切實數(shù)x均成立,則稱f(x)為“圓錐托底型”函數(shù).
(1)判斷函數(shù)f(x)=2x,g(x)=x3是否為“圓錐托底型”函數(shù)?并說明理由.
(2)若f(x)=x2+1是“圓錐托底型”函數(shù),求出M的最大值.
(3)問實數(shù)k、b滿足什么條件,f(x)=kx+b是“圓錐托底型”函數(shù).

查看答案和解析>>

科目: 來源: 題型:

把一顆質(zhì)地均勻,四個面上分別標有復(fù)數(shù)1,-1,i,-i(i為虛數(shù)單位)的正四面體玩具連續(xù)拋擲兩次,第一次出現(xiàn)底面朝下的復(fù)數(shù)記為a,第二次出現(xiàn)底面朝下的復(fù)數(shù)記為b.
(Ⅰ)用A表示“ab=-1”這一事件,求事件A的概率P(A);
(Ⅱ)設(shè)復(fù)數(shù)ab的實部為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

已知平面直角坐標系中
OA
=(2
2
,0),滿足
OB
+
OA
=
0
,平面內(nèi)有一動點E使得|
BE
-
BA
|+|
AE
-
AB
|=6.
(1)求動點E的軌跡方程C;
(2)過曲線C上的動點P向圓x2+y2=1引切線PA,PB,其中A,B為切點且直線AB交x軸,y軸于M,N,求△MON面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列{an},每年發(fā)放的電動型汽車牌照數(shù)為構(gòu)成數(shù)列{bn},完成下列表格,并寫出這兩個數(shù)列的通項公式;
a1=10 a2=9.5 a3=
 
   
a4=
 
     
b1=2 b2=
 
b3=
 
      
b4=
 
       
(2)從2013年算起,求二十年發(fā)放的汽車牌照總量.

查看答案和解析>>

科目: 來源: 題型:

已知一圓過P(4,-2)、Q(-1,3)兩點,且在y軸上截得的線段長為4
3
,求圓的方程.

查看答案和解析>>

科目: 來源: 題型:

設(shè)倒圓錐形容器的軸截面為一個等邊三角形,在此容器內(nèi)注入水,并浸入半徑為r的一個實心球,使球與水面恰好相切,試求取出球后水面高為多少?

查看答案和解析>>

科目: 來源: 題型:

稱子集A⊆M={1,2,3,4,5,6,7,8,9,10,11}是“好子集“,它有下述性質(zhì):若2k∈A,則2k-1∈A且2k+1∈A,(k∈Z)(空集是好子集),問:M中有多少個包含有2個偶數(shù)的好子集?

查看答案和解析>>

科目: 來源: 題型:

設(shè)集合M={a,b},N={c,d},定義M與N的一個運算“•”為:M•N={x|x=mn,m∈M,n∈N}.
(1)對于交集,有性質(zhì)A∩B=B∩A;類比以上結(jié)論是否有M•N=N•M?并證明你的結(jié)論.
(2)舉例驗證(A•B)•C=A•(B•C).

查看答案和解析>>

科目: 來源: 題型:

已知tanθ和cotθ是方程x2+kx+1=0的兩個根,當|k|≥2時,求tan4θ-cot4θ的值.

查看答案和解析>>

科目: 來源: 題型:

如圖,四棱錐P-ABCD的底面是邊長為2的正方形,M是PC上一點,側(cè)棱PA⊥底面ABCD,且PC與底面ABCD成45°角.
(1)當M為PC的中點時,求異面直線AM與PB所成的角;
(2)當PM=
8
3
時,求四面體PBDM的體積.

查看答案和解析>>

同步練習(xí)冊答案