相關(guān)習(xí)題
 0  252371  252379  252385  252389  252395  252397  252401  252407  252409  252415  252421  252425  252427  252431  252437  252439  252445  252449  252451  252455  252457  252461  252463  252465  252466  252467  252469  252470  252471  252473  252475  252479  252481  252485  252487  252491  252497  252499  252505  252509  252511  252515  252521  252527  252529  252535  252539  252541  252547  252551  252557  252565  266669 

科目: 來源: 題型:填空題

2.(1)sin120°•cos330°+sin(-690°)•cos(-660°)+tan675°=0;
(2)已知5cosθ=sinθ,則tan2θ=-$\frac{5}{12}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.在△ABC中,$C=\frac{π}{3}$,則cos2A+cos2B的最大值和最小值分別是( 。
A.$1-\frac{{\sqrt{3}}}{2},\frac{3}{2}$B.$\frac{1}{2}$,$\frac{5}{4}$C.$1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{3}}}{2}$D.$1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

20.某校運動會開幕式上舉行升旗儀式,在坡度為15°的看臺上,同一列上的第一排和最后一排測得旗桿頂部的仰角分別為60°和30°,第一排和最后一排的距離為10m(如圖所示),則旗桿的高度為(  )
A.10 mB.30 mC.10mD.10m

查看答案和解析>>

科目: 來源: 題型:解答題

19.(1)在極坐標(biāo)系Ox中,設(shè)集合A={(ρ,θ)|0≤θ≤$\frac{π}{4}$,0≤ρ≤cosθ},求集合A所表示的區(qū)域的面積;
(2)在直角坐標(biāo)系xOy中,直線l1$\left\{\begin{array}{l}{x=-4+tcos\frac{π}{4}}\\{y=tsin\frac{π}{4}}\end{array}\right.$(t為參數(shù)),曲線C1$\left\{\begin{array}{l}{x=acosθ}\\{y=2sinθ}\end{array}\right.$(θ表示參數(shù)),其中a>0,若曲線C上所有點均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知點A(2,0)是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右頂點,且橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$.過點M(-3,0)作直線l交橢圓C于P、Q兩點.
(1)求橢圓C的方程,并求出直線l的斜率的取值范圍;
(2)橢圓C的長軸上是否存在定點N(n,0),使得∠PNM=∠QNA恒成立?若存在,求出n的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

17.離心率$e=\frac{2}{3}$,焦距2c=4的橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1或$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1.

查看答案和解析>>

科目: 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=(1+x)2-mln(1+x),g(x)=x2+x+a.
(Ⅰ)當(dāng)a=0時,f(x)≥g(x)在(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(Ⅱ)當(dāng)m=2時,若函數(shù)h(x)=f(x)-g(x)在[0,2]上恰有兩個不同的零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知等差數(shù)列{an}中,Sn為其前n項和,且a4=5,S6=-39.
(1)求{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知定義在(0,+∞)上的函數(shù)f(x)對任意正數(shù)p,q都有$f(pq)=f(p)+f(q)-\frac{1}{2}$,當(dāng)x>4時,f(x)>$\frac{3}{2}$,且f($\frac{1}{2}$)=0.
(1)求f(2)的值;
(2)證明:函數(shù)f(x)在(0,+∞)上是增函數(shù);
(3)解關(guān)于x的不等式f(x)+f(x+3)>2.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,E是CC1的中點,F(xiàn)是CE的中點,F(xiàn)是CE的中點.
(1)求證:AE∥平面BDF;
(2)求證:A1C⊥平面BDF;
(3)求三棱錐F-A1BD的體積.

查看答案和解析>>

同步練習(xí)冊答案