相關(guān)習(xí)題
 0  252683  252691  252697  252701  252707  252709  252713  252719  252721  252727  252733  252737  252739  252743  252749  252751  252757  252761  252763  252767  252769  252773  252775  252777  252778  252779  252781  252782  252783  252785  252787  252791  252793  252797  252799  252803  252809  252811  252817  252821  252823  252827  252833  252839  252841  252847  252851  252853  252859  252863  252869  252877  266669 

科目: 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(1)若f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)的和,求g(x)和h(x)的解析式;
(2)已知P={a|函數(shù)f(x)在區(qū)間[(a+1)2,+∞)上是增函數(shù)};Q={a|函數(shù)g(x)是減函數(shù)}.求(P∩CRQ)∪(Q∩CRP);
(3)在(2)的條件下,比較f(2)與3-lg2的大小.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.如圖,在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P為AB邊上一動(dòng)點(diǎn),PD∥BC交AC于點(diǎn)D,現(xiàn)將△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD.
(1)當(dāng)棱錐A′PBCD的體積最大時(shí),求PA的長(zhǎng);
(2)若點(diǎn)P為AB的中點(diǎn),E為A′C的中點(diǎn),求證:DE⊥平面A′BC.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.化簡(jiǎn)求值:
(1)1.10+$\root{3}{512}$-0.5-2+lg25+2lg2
(2)已知2x=72y=A,且$\frac{1}{x}$+$\frac{1}{y}$=2,求A的值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.已知兩圓x2+y2=9和(x+4)2+(y+3)2=8,則它們的相交弦長(zhǎng)為$\frac{4\sqrt{14}}{5}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=$\frac{x}{1+|x|}$(x∈R) 時(shí),則下列結(jié)論正確的是( 。
(1)?x∈R,等式f(-x)+f(x)=0恒成立
(2)?m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根
(3)?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
(4)?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn).
A.(1)(2)B.(2)(3)C.(1)(2)(3)D.(1)(3)(4)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.在圓柱內(nèi)有一個(gè)內(nèi)接正三棱錐,過(guò)一條側(cè)棱和高作截面,正確的截面圖形是( 。
A.B.C.D.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.過(guò)點(diǎn)P(2,-1)作圓(x-1)2+y2=25的弦AB,則弦長(zhǎng)AB的最短時(shí)AB所在的直線方程方程是(  )
A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.若M={y|y=2x-1},P={x|y=$\sqrt{x-1}$},則M∩P=( 。
A.{y|y>1}B.{y|y≥1}C.{y|y>0}D.{y|y≥0}

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x3+ax2+bx+c (a,b,c∈R)在x=-1處有極值,在x=3處的切線方程為y=-16.
(1)求a,b,c的值;
(2)求函數(shù)f(x)在[-3,4]上的最大值與最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知命題p:橢圓方程$\frac{{x}^{2}}{2m-8}$+$\frac{{y}^{2}}{m-3}$=1.表示焦點(diǎn)在y軸上的橢圓;命題q:復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點(diǎn)在第三象限.
(1)若命題p為真命題,求實(shí)數(shù)m的范圍;
(2)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案