相關(guān)習(xí)題
 0  256035  256043  256049  256053  256059  256061  256065  256071  256073  256079  256085  256089  256091  256095  256101  256103  256109  256113  256115  256119  256121  256125  256127  256129  256130  256131  256133  256134  256135  256137  256139  256143  256145  256149  256151  256155  256161  256163  256169  256173  256175  256179  256185  256191  256193  256199  256203  256205  256211  256215  256221  256229  266669 

科目: 來源: 題型:

【題目】1用輾轉(zhuǎn)相除法求228與1995的最大公約數(shù)

2用秦九韶算法求多項(xiàng)式fx=+-8x+5在x=2時(shí)的值。

查看答案和解析>>

科目: 來源: 題型:

【題目】以橢圓的中心為圓心,為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓的左頂點(diǎn)為,左焦點(diǎn)為,上頂點(diǎn)為,且滿足,.

1求橢圓及其“準(zhǔn)圓”的方程;

2)若橢圓的“準(zhǔn)圓”的一條弦(不與坐標(biāo)軸垂直)與橢圓交于、兩點(diǎn),試證明:當(dāng)時(shí),試問弦的長(zhǎng)是否為定值,若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某班級(jí)有50名學(xué)生,現(xiàn)要采取系統(tǒng)抽樣的方法在這50名學(xué)生中抽出10名學(xué)生,將這50名學(xué)生隨機(jī)編為1~50號(hào),并進(jìn)行分組,第一組1~5號(hào),第二組6~10號(hào),…,第十組46~50號(hào).若在第三組中抽得號(hào)碼為12的學(xué)生,則在第九組中抽得號(hào)碼為_____的學(xué)生.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1處取得極值,求的值;

2討論的單調(diào)性;

3證明:為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知y=f(x),x∈(-a,a),F(xiàn)(x)=f(x)+f(-x),則F(x)是( )
A.奇函數(shù)
B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)
D.非奇非偶函數(shù)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線,半徑為的圓相切,圓心軸上且在直線的右上方

1求圓的方程;

2若直線過點(diǎn)且與圓交于兩點(diǎn)軸上方,B在軸下方,問在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,函數(shù),.

(1)指出的單調(diào)性(不要求證明);

(2)若有的值;

(3)若,求使不等式恒成立的的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)證明函數(shù)上是減函數(shù),上是增函數(shù);

(2)若方程有且只有一個(gè)實(shí)數(shù)根,判斷函數(shù)的奇偶性;

(3)在(2)的條件下探求方程的根的個(gè)數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,A,B兩點(diǎn)的極坐標(biāo)分別為.

(1)求圓C的普通方程和直線的直角坐標(biāo)方程;

(2)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】(1)圖所示,在直角梯形ABCD中,AD∥BC,,AB=BC=1,AD=2,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到△A1BE的位置,如圖(2)所示.

1證明:CD⊥平面A1OC;

2若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案