科目: 來源: 題型:
【題目】已知由n(n∈N*)個正整數(shù)構成的集合A={a1,a2,…,an}(a1<a2<…<an,n≥3),記SA=a1+a2+…+an,對于任意不大于SA的正整數(shù)m,均存在集合A的一個子集,使得該子集的所有元素之和等于m.
(1)求a1,a2的值;
(2)求證:“a1,a2,…,an成等差數(shù)列”的充要條件是“”;
(3)若SA=2020,求n的最小值,并指出n取最小值時an的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點.
(Ⅰ)求證:PO平面;
(Ⅱ)求平面EFG與平面所成銳二面角的大;
(Ⅲ)線段上是否存在點,使得直線與平面所成角為,若存在,求線段的長度;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了提高學生的身體素質(zhì),某校高一、高二兩個年級共336名學生同時參與了“我運動,我健康,我快樂”的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取7名和5名學生進行測試.下表是高二年級的5名學生的測試數(shù)據(jù)(單位:個/分鐘):
(1)求高一、高二兩個年級各有多少人?
(2)設某學生跳繩個/分鐘,踢毽個/分鐘.當,且時,稱該學生為“運動達人”.
①從高二年級的學生中任選一人,試估計該學生為“運動達人”的概率;
②從高二年級抽出的上述5名學生中,隨機抽取3人,求抽取的3名學生中為“運動達人”的人數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】為配合“2019雙十二”促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準備某種商品各50個.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給四個派送點的商品數(shù)調(diào)整為40,45,54,61,但調(diào)整只能在相鄰派送點進行,每次調(diào)動可以調(diào)整1件商品.為完成調(diào)整,則( )
A.最少需要16次調(diào)動,有2種可行方案
B.最少需要15次調(diào)動,有1種可行方案
C.最少需要16次調(diào)動,有1種可行方案
D.最少需要15次調(diào)動,有2種可行方案
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為常數(shù),).
(Ⅰ)若是函數(shù)的一個極值點,求的值;
(Ⅱ)求證:當時,在上是增函數(shù);
(Ⅲ)若對任意的(1,2),總存在,使不等式成立,求實數(shù)的取范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,平面五邊形中,,,,,是邊長為2的正三角形.現(xiàn)將沿折起,得到四棱錐(如圖2),且.
(1)求證:平面平面;
(2)在棱上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證:++≥3.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù).
(Ⅰ) 求曲線在點處的切線方程;
(Ⅱ) 討論函數(shù)的單調(diào)性;
(Ⅲ) 設,當時,若對任意的,存在,使得≥,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com