分析 (1)連接EB、EC,利用已知條件證明Rt△BEF≌Rt△CEG,即可得到BF=CG;
(2)根據(jù)(1)中的條件證得Rt△AFE≌Rt△AGE,根據(jù)全等三角形的性質(zhì)得到AG=AF,于是得到結(jié)論.
解答 (1)證明:連接BE、EC,
∵ED⊥BC,
D為BC中點(diǎn),
∴BE=EC,
∵EF⊥AB EG⊥AG,
且AE平分∠FAG,
∴FE=EG,
在Rt△BFE和Rt△CGE中,
$\left\{\begin{array}{l}{BE=CE}\\{EF=EG}\end{array}\right.$,
∴Rt△BFE≌Rt△CGE (HL),
∴BF=CG;
(2)在Rt△AFE與Rt△AGE中,
$\left\{\begin{array}{l}{EF=EG}\\{AE=AE}\end{array}\right.$,
∴Rt△AFE≌Rt△AGE,
∴AG=AF,
∵AB+AC=AB+AG+CG=AB+AG+BF=AG+AF=2AG.
點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì),線段垂直平分線的性質(zhì),角平分線的性質(zhì),熟練正確全等三角形的判定定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②③ | B. | ①③④ | C. | ①②④ | D. | ①②③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com