19.通過(guò)類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例,請(qǐng)補(bǔ)充完整.

原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,求證:EF=BE+DF.
(1)思路梳理
∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADG=∠B=90°,∴∠FDG=∠ADG+∠ADC=180°,則點(diǎn)F、D、G共線.
根據(jù)SAS,易證△AFG≌△AFE,從而得EF=BE+DF;
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,但當(dāng)∠B與∠D滿足等量關(guān)系∠B+∠D=180°時(shí),仍有EF=BE+DF,請(qǐng)給出證明;
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°,猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過(guò)程.

分析 (1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,再證明△AFG≌△AFE進(jìn)而得到EF=FG,即可得EF=BE+DF;
(2)∠B+∠D=180°時(shí),EF=BE+DF,與(1)的證法類同;
(3)根據(jù)△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE′,根據(jù)旋轉(zhuǎn)的性質(zhì),可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根據(jù)Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,證△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2

解答 解:(1)如圖1,∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線,
在△AFE和△AFG中
$\left\{\begin{array}{l}{AE=AG}\\{∠EAF=∠FAG}\\{AF=AF}\end{array}\right.$,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF.
故答案為:SAS,△AFE;

(2)∠B+∠D=180°時(shí),EF=BE+DF;
如圖2,∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,點(diǎn)F、D、G共線,
在△AFE和△AFG中
$\left\{\begin{array}{l}{AE=AG}\\{∠EAF=∠FAG}\\{AF=AF}\end{array}\right.$,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF.
故答案為:∠B+∠D=180°;

(3)猜想:DE2=BD2+EC2,
證明:如圖3,連接DE′,根據(jù)△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE′,
∴△AEC≌△ABE′,
∴BE′=EC,AE′=AE,
∠C=∠ABE′,∠EAC=∠E′AB,
在Rt△ABC中,
∵AB=AC,
∴∠ABC=∠ACB=45°,
∴∠ABC+∠ABE′=90°,
即∠E′BD=90°,
∴E′B2+BD2=E′D2
又∵∠DAE=45°,
∴∠BAD+∠EAC=45°,
∴∠E′AB+∠BAD=45°,
即∠E′AD=45°,
在△AE′D和△AED中,
$\left\{\begin{array}{l}{AE′=AE}\\{∠E′AD=∠DAE}\\{AD=AD}\end{array}\right.$,
∴△AE′D≌△AED(SAS),
∴DE=DE′,
∴DE2=BD2+EC2

點(diǎn)評(píng) 此題主要考查了幾何變換,關(guān)鍵是正確畫出圖形,證明△AFG≌△AEF.此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.地球表面積約為511000000km2,用科學(xué)記數(shù)法表示為5.11×108km2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知方程x2-6x+c=0.
(1)當(dāng)此方程有兩個(gè)不相等的實(shí)數(shù)根時(shí),求c的取值范圍;
(2)若3+$\sqrt{7}$是方程的一個(gè)根,求方程的另一個(gè)根及c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某檢修小組從A地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛紀(jì)錄如下.(單位:km)
第一次第二次第三次第四次第五次第六次第七次
-4+7-9+8+6-5-2
(1)求收工時(shí)距A地多遠(yuǎn)?
(2)當(dāng)維修小組返回到A地時(shí),若每km耗油0.3升,問(wèn)共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,其對(duì)稱軸為直線x=-1.若其與x軸的一個(gè)交點(diǎn)為A(2,0),則由圖象可知,當(dāng)自變量x的取值范圍是x>2或x<-4時(shí),函數(shù)值y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖1,矩形MNPQ中,點(diǎn)E,F(xiàn),G,H分別在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.圖2,圖3中,四邊形ABCD為矩形,且AB=4,BC=8.
(1)在圖2,圖3中,點(diǎn)E,F(xiàn)分別在BC,CD邊上,試?yán)谜叫尉W(wǎng)格在圖上作出矩形ABCD的反射四邊形EFGH.
(2)求圖2,圖3中反射四邊形EFGH的周長(zhǎng).
(3)明明發(fā)現(xiàn)一個(gè)矩形的反射四邊形有無(wú)數(shù)個(gè),但這些反射四邊形的周長(zhǎng)都相等.圖1中,若MN=3,NP=4,則四邊形EFGH的周長(zhǎng)為10.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.計(jì)算(2a32的結(jié)果是(  )
A.4a6B.4a5C.2a6D.2a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,A、B兩點(diǎn)在雙曲線y=$\frac{6}{x}$上,經(jīng)過(guò)A、B兩點(diǎn)分別向坐標(biāo)軸作垂線段,已知S陰影=1,則S1+S2=10.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.二次函數(shù)y=4x2+3的頂點(diǎn)坐標(biāo)為(0,3).

查看答案和解析>>

同步練習(xí)冊(cè)答案