分析 (1)由平行四邊形的性質(zhì)和角平分線的定義得出∠BAE=∠AEB.證出AB=BE.同理AB=AF.得出AF=BE.證出四邊形ABEF是平行四邊形即可得出結(jié)論.
(2)作OH⊥AD于H,由菱形的性質(zhì)得出AB=AF=4,∠ABC=60°,AO⊥BF,∠ABF=∠AFB=30°,由含30°角的直角三角形的性質(zhì)得出AO=$\frac{1}{2}$AB=2,求出OH、DH,即可得出結(jié)果.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠DAE=∠AEB.
∵AE是角平分線,
∴∠DAE=∠BAE.
∴∠BAE=∠AEB.
∴AB=BE.
同理AB=AF.
∴AF=BE.
∴四邊形ABEF是平行四邊形.
∵AB=BE,
∴四邊形ABEF是菱形.
(2)解:作OH⊥AD于H,如圖所示:
∵四邊形ABEF是菱形,∠BCD=120°,AB=4,
∴AB=AF=4,∠ABC=60°,AO⊥BF,
∴∠ABF=∠AFB=30°,
∴AO=$\frac{1}{2}$AB=2,
∴OH=$\sqrt{3}$,AH=1,DH=AD-AH=4,
∴tan∠ADO=$\frac{OH}{DH}$=$\frac{\sqrt{3}}{4}$.
點(diǎn)評(píng) 本題考查了菱形的判定與性質(zhì)、平行四邊形的性質(zhì)與判定、等腰三角形的判定、三角函數(shù)等知識(shí);熟練掌握菱形的判定與性質(zhì)是解決問題的關(guān)鍵,難度適中.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | c<a<b | C. | a<c<b | D. | a<b<c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com