分析 (1)易證BC=AC,∠BCD=60°,即可證明△BCD≌△ACE,即可解題;
(2)易證BD為等邊△ABC中AC邊上的高,根據(jù)等邊三角形三線合一性質(zhì)可得∠ABD=∠DBC=30°,根據(jù)△BCD≌△ACE,可得∠DBC=∠CAE,即可求得∠BAF=90°,根據(jù)30°角所對(duì)直角邊是斜邊一半的性質(zhì)即可解題.
解答 解:(1)∵△ABC是等邊△,
∴BC=AC,∠BCD=60°,
在△BCD和△ACE中,
$\left\{\begin{array}{l}{CD=CE}\\{∠BCD=∠ACE}\\{BC=AC}\end{array}\right.$.
∴△BCD≌△ACE(SAS);
(2)BF=2AF,
理由:∵AF=CF,AB=BC,
∴BF⊥AC且平分AC,
∴BD為等邊△ABC中AC邊上的高,
∴BD平分∠ABC,
∴∠ABD=∠DBC=30°,
∵△BCD≌△ACE,
∴∠DBC=∠CAE,
∴∠ABD=∠CAE=30°,
∴∠BAF=∠BAC+∠CAE=90°,
∴在Rt△ABF中,BF=2AF.
點(diǎn)評(píng) 本題考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊相等的性質(zhì),考查了30°角所對(duì)直角邊是斜邊一半的性質(zhì),本題中求證△BCD≌△ACE是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
類型 價(jià)格 | A型 | B型 |
進(jìn)價(jià)(元/盞) | 35 | 65 |
標(biāo)價(jià)(元/盞) | 50 | 100 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com