函數(shù)f(x)滿足f(x2+1)=x4-1,則f(x)的解析式為
 
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:用換元法,設(shè)x2+1=t(其中t≥1),求出x2=t-1;再求f(t),即得f(x).
解答: 解:根據(jù)題意,設(shè)x2+1=t,(其中t≥1),
∴x2=t-1;
∴f(t)=(t-1)2-1=t2-2t,(其中t≥1);
∴f(x)=x2-2x,(其中x≥1).
故答案為:f(x)=x2-2x,(其中x≥1).
點評:本題考查了求函數(shù)的解析式的問題,解題時應(yīng)根據(jù)題意,用換元法解答,要注意換元前后的自變量的取值范圍的變化情況,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明“一個三角形不能有兩個直角”有三個步驟:
①∠A+∠B+∠C=90°+90°+∠C>180°,這與三角形內(nèi)角和為180°矛盾,故假設(shè)錯誤.
②所以一個三角形不能有兩個直角.
③假設(shè)△ABC中有兩個直角,不妨設(shè)∠A=90°,∠B=90°.
上述步驟的正確順序為
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項a1=
3
2
,前n項和為Sn,且滿足2an+1+Sn=3( n∈N*).則滿足
18
17
S2n
Sn
8
7
的所有n的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
25
-
y2
9
=1的左支上有一點M到右焦點F1的距離為18,N是MF1的中點,O為坐標(biāo)原點,則|ON|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若x∈(m-
1
2
,m+
1
2
](其中m為整數(shù)),則m叫做與實數(shù)x“親密的整數(shù)”,記作{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個命題:
①函數(shù)y=f(x)在x∈(0,1)上是增函數(shù);
②函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④當(dāng)x∈(0,2]時,函數(shù)g(x)=f(x)-lnx有兩個零點.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a≥0,b≥0,且a+b=1,則a2+b2的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-2x
的定義域為集合A,函數(shù)y=ln(2x+1)的定義域為集合B,則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)在橢圓
x2
2
+y2=1
上運動,設(shè)d=
x2+y2-4y+4
-
2
2
x
,則d的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=2x2-5x+3在點(2,1)處的切線方程是
 

查看答案和解析>>

同步練習(xí)冊答案