lim
n→∞
(1+
1
3
+
1
9
+…+
1
3n
考點(diǎn):極限及其運(yùn)算
專題:等差數(shù)列與等比數(shù)列
分析:利用等比數(shù)列的求和公式求得 1+
1
3
+
1
9
+…+
1
3n
的值,再利用數(shù)列極限的運(yùn)算法則求得 
lim
n→∞
(1+
1
3
+
1
9
+…+
1
3n
)的值.
解答: 解:∵1+
1
3
+
1
9
+…+
1
3n
=
1-(
1
3
)
n+1
1-
1
3
=
3
2
-
1
2×3n
,
lim
n→∞
(1+
1
3
+
1
9
+…+
1
3n
)=
lim
n→∞
3
2
-
1
2×3n
)=
3
2
-0=
3
2
點(diǎn)評:本題主要考查等比數(shù)列的求和公式,數(shù)列極限的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)試行高考自主招生考試改革:在高中三學(xué)年中舉行5次統(tǒng)一測試,學(xué)生如果通過其中2次測試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測試,而每個學(xué)生最多也只能參加5次測試.假設(shè)某學(xué)生每次通過測試的概率都是
1
3
,每次測試通過與否相互獨(dú)立.規(guī)定:若前4次都沒有通過測試,則第5次不能參加測試.
(1)求該學(xué)生考上大學(xué)的概率;
(2)求該生參加考試次數(shù)X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
cos(π+α)
cosα[cos(π-α)-1]
+
cos(α-2π)
[sin(α-
2
)cos(α-π)-sin(
2
+α)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=
4
5
,α∈(0,
π
2
),tanβ=
1
2
,求tan(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出f(x)=|x-2|-|x+1|圖象,求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+3ax+a2-3,(x<0)
2ex-(x-a)2+3,(x>0)
,a∈R.
(1)若函數(shù)y=f(x)在x=1處取得極值,求a的值;
(2)若函數(shù)y=f(x)的圖象上存在兩點(diǎn)關(guān)于原點(diǎn)對稱,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:f(x)=x3.求曲線C上橫坐標(biāo)為1的點(diǎn)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不定方程a+b+c+d+e+f=11的正整數(shù)解有多少組,非負(fù)整數(shù)解數(shù)有多少組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x
x2+1
的圖象與直線y=k有兩個交點(diǎn),則k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案