f(x)為R上的奇函數(shù),當x≥0時,f(x)=2x+2x+b(b為常數(shù))(b為常數(shù)),則f(-1)=
 
考點:函數(shù)奇偶性的性質
專題:函數(shù)的性質及應用
分析:利用函數(shù)的奇函數(shù),將f(-1)轉化為f(1)進行求值.
解答: 解:因為函數(shù)f(x)是奇函數(shù),
所以f(0)=1+b=0,即b=-1
且f(-1)=-f(1),
因為x≥0時,f(x)=2x+2x+b,
所以f(-1)=-f(1)=-(2+2+b)=-4-b=-3,
故答案為:-3
點評:本題主要考查函數(shù)奇偶性的應用,要求熟練掌握函數(shù)奇偶性的性質.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若將一個圓錐的側面沿一條母線剪開,其展開圖是半徑為2cm的半圓,則該圓錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
25
-
y2
9
=1的左支上有一點M到右焦點F1的距離為18,N是MF1的中點,O為坐標原點,則|ON|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a≥0,b≥0,且a+b=1,則a2+b2的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1-2x
的定義域為集合A,函數(shù)y=ln(2x+1)的定義域為集合B,則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正態(tài)分布密度曲線p(x)=
1
σ
e-
(x-μ)2
2σ2
,且p(x)max=p(20)=
1
2
π
,則方差為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(x,y)在橢圓
x2
2
+y2=1
上運動,設d=
x2+y2-4y+4
-
2
2
x
,則d的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若單調遞增數(shù)列{an}滿足an+an+1+an+2=3n-6,且a2=
1
2
a1,則a1的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x>0,y>0,且
2
x
+
1
y
=1,若x+2y+1≥k2恒成立,則k的范圍是
 

查看答案和解析>>

同步練習冊答案