相關(guān)習(xí)題
 0  14622  14630  14636  14640  14646  14648  14652  14658  14660  14666  14672  14676  14678  14682  14688  14690  14696  14700  14702  14706  14708  14712  14714  14716  14717  14718  14720  14721  14722  14724  14726  14730  14732  14736  14738  14742  14748  14750  14756  14760  14762  14766  14772  14778  14780  14786  14790  14792  14798  14802  14808  14816  266669 

科目: 來源:不詳 題型:單選題

已知f(x)為偶函數(shù),且f(1+x)=f(3-x),當(dāng)-2≤x≤0時,f(x)=3x,若n∈N*,an=f(n),則a2011=(  )
A.-
1
3
B.3C.-3D.
1
3

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知f(x)的定義域為(0,+∞),且滿足f(4)=1,對任意x1,x2(0,+∞),都有f(x1•x2)=f(x1)+f(x2),當(dāng)x∈(0,1)時,f(x)<0.
(1)求f(1);              
(2)證明f(x)在(0,+∞)上是增函數(shù);
(3)解不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

已知f(x)為R上的偶函數(shù),對任意x∈R都有f(x+6)=f(x)+f(3)且當(dāng)x1,x2∈[0,3],x1≠x2時,有
f(x1)-f(x2)
x1-x2
>0成立,給出四個命題:
①f(3)=0; ②直線x=-6是函數(shù)y=f(x)的圖象的一條對稱軸;
③函數(shù)y=f(x)在[-9,-6]上為增函數(shù);   ④函數(shù)y=f(x)在[-9,9]上有四個零點.
其中所有正確命題的序號為______.

查看答案和解析>>

科目: 來源: 題型:

(08年全國卷Ⅰ)(本小題滿分12分)

雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經(jīng)過右焦點垂直于的直線分別交兩點.已知成等差數(shù)列,且同向.

(Ⅰ)求雙曲線的離心率;

(Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知f(x)是定義在實數(shù)集R上的不恒為0的函數(shù),對任意實數(shù)x,y有f(x)f(y)=f(x+y),當(dāng)x>0時,有0<f(x)<1.
(Ⅰ)求f(0)的值,并證明f(x)恒正;
(Ⅱ)判斷f(x)在實數(shù)集R上單調(diào)性;
(Ⅲ)設(shè)Sn為數(shù)列{an}的前n項和,a1=
1
3
,an=f(n)(n為正整數(shù)).令bn=f(Sn),問數(shù)列{bn}中是否存在最大項?若存在,求出最大項的值;若不存在,試說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù)f(x)定義在(-1,1)上,對于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且當(dāng)x<0時,f(x)>0.
(Ⅰ)驗證函數(shù)f(x)=ln
1-x
1+x
是否滿足這些條件;
(Ⅱ)判斷這樣的函數(shù)是否具有奇偶性和其單調(diào)性,并加以證明.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù)f(t)滿足對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)證明:對一切大于1的正整數(shù)t,恒有f(t)>t;
(3)試求滿足f(t)=t的整數(shù)t的個數(shù),并說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=
2x-1,x≤0
log2(x+1),x>0
如果f(x0)<1,求x0的取值范圍.

查看答案和解析>>

科目: 來源:北京 題型:解答題

設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x]上單調(diào)遞增,在[x,1]單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x為峰點,包含峰點的區(qū)間為含峰區(qū)間.
對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.
(Ⅰ)證明:對任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x1,1)為含峰區(qū)間;
(Ⅱ)對給定的r(0<r<0.5),證明:存在x1,x2∈(0,1),滿足x2-x1≥2r,使得由(Ⅰ)確定的含峰區(qū)間的長度不大于0.5+r;
(Ⅲ)選取x1,x2∈(0,1),x1<x2由(Ⅰ)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類似地可確定是一個新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2,x3的值,滿足兩兩之差的絕對值不小于0.02且使得新的含峰區(qū)間的長度縮短到0.34.
(區(qū)間長度等于區(qū)間的右端點與左端點之差).

查看答案和解析>>

科目: 來源:不詳 題型:解答題

定義在R+上的函數(shù)f(x)對任意實數(shù)a,b∈R+,均有f(ab)=f(a)+f(b)成立,且當(dāng)x>1時,f(x)<0.
(1)求f(1)
(2)求證:f(x)為減函數(shù).
(3)當(dāng)f(4)=-2時,解不等式f(x-3)+f(5)≥-1.

查看答案和解析>>

同步練習(xí)冊答案