相關習題
 0  212692  212700  212706  212710  212716  212718  212722  212728  212730  212736  212742  212746  212748  212752  212758  212760  212766  212770  212772  212776  212778  212782  212784  212786  212787  212788  212790  212791  212792  212794  212796  212800  212802  212806  212808  212812  212818  212820  212826  212830  212832  212836  212842  212848  212850  212856  212860  212862  212868  212872  212878  212886  266669 

科目: 來源: 題型:

如圖,在平面直角坐標系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,短軸長是2.
(1)求a,b的值;
(2)設橢圓C的下頂點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,當
S
|k|
16
9
時,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系中,已知點F(
2
2
)及直線l:x+y-
2
=0,曲線C1是滿足下列兩個條件的動點P(x,y)的軌跡:①|(zhì)PF|=
2
d其中d是P到直線l的距離;②
x>0
y>0
2x+2y<5

(1)求曲線C1的方程;
(2)若存在直線m與曲線C1、橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)均相切于同一點,求橢圓C2離心率e的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

甲乙丙丁4人玩?zhèn)髑蛴螒,持球者將球等可能的傳給其他3人,若球首先從甲傳出,經(jīng)過3次傳球.
(1)求球恰好回到甲手中的概率;
(2)設乙獲球(獲得其他游戲者傳的球)的次數(shù)為ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
m+1
+y2=1
的兩個焦點是F1(-c,0),F(xiàn)2(c,0)(c>0).
(Ⅰ)若直線y=x+2與橢圓C有公共點,求m的取值范圍;
(Ⅱ)設E是(I)中直線與橢圓的一個公共點,求|EF1|+|EF2|取得最小值時,橢圓的方程;
(Ⅲ)已知斜率為k(k≠0)的直線l與(Ⅱ)中橢圓交于不同的兩點A,B,點Q滿足
AQ
=
QB
NQ
AB
=0
,其中N為橢圓的下頂點,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知動圓C過定點(1,0),且與直線x=-1相切.
(Ⅰ)求動圓圓心C的軌跡方程;
(Ⅱ)設A、B是軌跡C上異于原點O的兩個不同點,直線OA和OB的傾斜角分別為α和β,
 ①當α+β=
π
2
時,求證直線AB恒過一定點M;
 ②若α+β為定值θ(0<θ<π),直線AB是否仍恒過一定點,若存在,試求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知⊙O的直徑為10,弦AB=8,P是弦AB上一個動點,求OP長的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知拋物線y2=2px(p>0)上點T(3,t)到焦點F的距離為4.
(Ⅰ)求t,p的值;
(Ⅱ)設A、B是拋物線上分別位于x軸兩側(cè)的兩個動點,且
OA
OB
=5
(其中O為坐標原點).
(。┣笞C:直線AB必過定點,并求出該定點P的坐標;
(ⅱ)過點P作AB的垂線與拋物線交于C、D兩點,求四邊形ACBD面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

圓錐底面半徑為r,母線長是底面半徑的3倍,在底面圓周上有一點A,求一個動點P自A出發(fā)在側(cè)面上繞一周到A點的最短路程.

查看答案和解析>>

科目: 來源: 題型:

如圖,過拋物線y2=2px(p>0)的焦點F的兩條互相垂直的直線與拋物線分別交于點A、B和C、D;拋物線上的點T(2,t)(t>0)到焦點的距離為3.
(1)求p、t的值;
(2)當四邊形ACBD的面積取得最小值時,求直線AB的斜率.

查看答案和解析>>

科目: 來源: 題型:

執(zhí)行如圖所不的程序框圖,則輸出的x的值是( 。
A、3B、4C、6D、8

查看答案和解析>>

同步練習冊答案