相關(guān)習(xí)題
 0  264400  264408  264414  264418  264424  264426  264430  264436  264438  264444  264450  264454  264456  264460  264466  264468  264474  264478  264480  264484  264486  264490  264492  264494  264495  264496  264498  264499  264500  264502  264504  264508  264510  264514  264516  264520  264526  264528  264534  264538  264540  264544  264550  264556  264558  264564  264568  264570  264576  264580  264586  264594  266669 

科目: 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, , ,

,點在線段上,且 平面.

1)求證:平面平面

2)當(dāng)四棱錐的體積最大時,求四棱錐的表面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】無窮數(shù)列滿足:,,記表示3個實數(shù)、中的最大數(shù)).

1)若,,求數(shù)列的前項和;

2)若,,當(dāng)時,求滿足條件的取值范圍;

3)證明:對于任意正整數(shù)、、,必存在正整數(shù),使得,.

查看答案和解析>>

科目: 來源: 題型:

【題目】新高考3+3最大的特點就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),覺得從某學(xué)校高一年級的650名學(xué)生中隨機抽取男生,女生各25人進行模擬選科.經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10人.

1)請完成下面的2×2列聯(lián)表;

選擇全理

不選擇全理

合計

男生

5

女生

合計

2)估計有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由;

3)現(xiàn)從這50名學(xué)生中已經(jīng)選取了男生3名,女生2名進行座談,從中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.

附:,其中

015

010

005

0025

0010

0005

0001

2072

2076

3841

5024

6635

7879

10828

查看答案和解析>>

科目: 來源: 題型:

【題目】把半橢圓)與圓弧)合成的曲線稱作“曲圓”,其中的右焦點,如圖所示,、、、分別是“曲圓”與軸、軸的交點,已知,過點且傾斜角為的直線交“曲圓”于兩點(軸的上方).

1)求半橢圓和圓弧的方程;

2)當(dāng)點、分別在第一、第三象限時,求△的周長的取值范圍;

3)若射線繞點順時針旋轉(zhuǎn)交“曲圓”于點,請用表示、兩點的坐標(biāo),并求△的面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),直線l過點P(1,1),且傾斜角α.以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知圓C的極坐標(biāo)方程為ρ=4sin θ.

(1)求圓C的直角坐標(biāo)方程;

(2)設(shè)直線l與圓C交于A,B兩點,求|PA|·|PB|的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某企業(yè)為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:毫克),質(zhì)量值落在的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.

產(chǎn)品質(zhì)量/毫克

頻數(shù)

(Ⅰ)以樣本的頻率作為概率,試估計從甲流水線上任取件產(chǎn)品,求其中不合格品的件數(shù)的數(shù)學(xué)期望.

甲流水線

乙流水線

總計

合格品

不合格品

總計

(Ⅱ)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認(rèn)為產(chǎn)品的包裝合格與兩條自動包裝流水線的選擇有關(guān)?

(Ⅲ)由乙流水線的頻率分布直方圖可以認(rèn)為乙流水線生產(chǎn)的產(chǎn)品質(zhì)量服從正態(tài)分布,求質(zhì)量落在上的概率.

參考公式:

參考數(shù)據(jù):

參考公式:

,其中

查看答案和解析>>

科目: 來源: 題型:

【題目】國內(nèi)某知名企業(yè)為適應(yīng)發(fā)展的需要,計劃加大對研發(fā)的投入,據(jù)了解,該企業(yè)原有100名技術(shù)人員,年人均投入萬元,現(xiàn)把原有技術(shù)人員分成兩部分:技術(shù)人員和研發(fā)人員,其中技術(shù)人員名(),調(diào)整后研發(fā)人員的年人均投入增加%,技術(shù)人員的年人均投入調(diào)整為萬元.

1)要使這名研發(fā)人員的年總投入恰好與調(diào)整前100名技術(shù)人員的年總投入相同,求調(diào)整后的技術(shù)人員的人數(shù);

2)是否存在這樣的實數(shù),使得調(diào)整后,在技術(shù)人員的年人均投入不減少的情況下,研發(fā)人員的年總投入始終不低于技術(shù)人員的年總投入?若存在,求出的范圍,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程是為參數(shù)),把曲線C的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的一半,得到曲線直線l的普通方程是,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.

1)求直線l的極坐標(biāo)方程和曲線的普通方程;

2)記射線)與交于點A,與l交于點B,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】十七世紀(jì),法國數(shù)學(xué)家費馬提出猜想;“當(dāng)整數(shù)時,關(guān)于、、的方程沒有正整數(shù)解”,經(jīng)歷三百多年,1995年英國數(shù)學(xué)家安德魯懷爾斯給出了證明,使它終成費馬大定理,則下面命題正確的是(

①對任意正整數(shù),關(guān)于、、的方程都沒有正整數(shù)解;

②當(dāng)整數(shù)時,關(guān)于、的方程至少存在一組正整數(shù)解;

③當(dāng)正整數(shù)時,關(guān)于、的方程至少存在一組正整數(shù)解;

④若關(guān)于、的方程至少存在一組正整數(shù)解,則正整數(shù)

A.①②/span>B.①③C.②④D.③④

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),的在數(shù)集上都有定義,對于任意的,當(dāng)時,成立,則稱是數(shù)集的限制函數(shù).

(1)求上的限制函數(shù)的解析式;

(2)證明:如果在區(qū)間上恒為正值,則上是增函數(shù);[注:如果在區(qū)間上恒為負(fù)值,則在區(qū)間上是減函數(shù),此結(jié)論無需證明,可以直接應(yīng)用]

(3)利用(2)的結(jié)論,求函數(shù)上的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案