2009年深圳市高三年級第一次調(diào)研考試
數(shù)學(xué) (理科) 2009.3
本試卷共6頁,包括六個部分21小題,滿分1 5 0分?荚囉脮rl 5 0分鐘。
注意事項(xiàng):
1.答卷前,考生首先檢查答題卡是否整潔無缺損,監(jiān)考教師分發(fā)的考生信息條形碼
是否正確;之后務(wù)必用0.5毫米黑色字跡的簽字筆在答題卡指定位置填寫自己的
學(xué)校、姓名和考生號,同時,將監(jiān)考教師發(fā)放的條形碼正向準(zhǔn)確粘貼在答題卡的
貼條形碼區(qū)。請保持條形碼整潔、不污損。
2.選擇題每小題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需
改動,用橡皮擦干凈后,再選涂其它答案,答案不能答在試卷上。不按要求填涂
的答案無效。
3.非選擇題必須用0.5毫米黑色字跡的簽字筆作答,答案必須寫在答題卡各題目指
定區(qū)域內(nèi)相應(yīng)位置上。請注意每題答題空間,預(yù)先合理安排;如需改動,先劃掉
原來的答案,然后再寫上新的答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答
的答案無效。
4.作答選做題時,請先用2B鉛筆填涂選做題的題號對應(yīng)的信息點(diǎn),再作答。漏涂、
錯涂、多涂的答案無效。
5.考生必須保持答題卡的整潔。考試結(jié)束后,將答題卡交回。
參考公式:
如果事件A、 B互斥,那么P(A+B)=P(A)+P(B);
如果事件A、B相:互獨(dú)立,那么P(AB)=P(A)P(B);
橢圓的準(zhǔn)線方程為,其中;
若球的半徑為R,則球的表面積為S=4πR 2,體積為V.
一、選擇題:本大題共8個小題;每小題5分,共40分.在每小題給出的四個選項(xiàng)中,有且只有一項(xiàng)是符合題目要求的.
1.如果復(fù)數(shù)(2+ai)i(a∈R)的實(shí)部與虛部是互為相反數(shù),則a的值等于
A.-l B.
2009年深圳市高三年級第一次調(diào)研考試
數(shù)學(xué)(理科)答案及評分標(biāo)準(zhǔn)
說明:
1
2
3
4
5
6
7
8
C
C
D
C
A
B
B
A
二、填空題:本大題每小題5分(第12題前空2分,后空3分),滿分30分.
9.. 10.. 11. . 12. ; .
13.. 14. . 15..
三、解答題:本大題6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16.(本小題滿分12分)
已知函數(shù).學(xué)科網(wǎng)
(Ⅰ)求的最小正周期;
(Ⅱ)設(shè),求的值域和單調(diào)遞增區(qū)間.學(xué)科
網(wǎng)【解】(Ⅰ)∵學(xué)科網(wǎng)
. …………………… 3分
的最小正周期為. ………………… 5分
(Ⅱ)∵, , .
的值域?yàn)?sub>. ……………… 10分
當(dāng)遞減時,遞增.
,即.
故的遞增區(qū)間為. ……………………12分
17.(本小題滿分12分)
如圖,為圓的直徑,點(diǎn)、在圓上,,矩形和圓所在的平面互相垂直.已知,.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的大。
(Ⅲ)當(dāng)的長為何值時,二面角的大小為?
【解】(Ⅰ)證明:平面平面,,
平面平面=,
平面.
平面,,
又為圓的直徑,,
平面.
平面,平面平面. ………………………4分
(Ⅱ)根據(jù)(Ⅰ)的證明,有平面,為在
平面上的射影,
因此,為直線與平面所成的角. ………………………5分
,四邊形為等腰梯形,
過點(diǎn)作,交于.
,,則.
在中,根據(jù)射影定理,得. ………………………7分
,.
直線與平面所成角的大小為. ………………………8分
(Ⅲ)(解法一)過點(diǎn)作,交的延長線于點(diǎn),連.
根據(jù)(Ⅰ)的證明,平面,則,
為二面角的平面角,. …………………9分
在中,,,. ………………… 10分
又四邊形為矩形, .
.
因此,當(dāng)的長為時,二面角的大小為. …………………12分
(解法二)設(shè)中點(diǎn)為,以為坐標(biāo)原點(diǎn),、、方向
分別為軸、軸、軸方向建立空間直角坐標(biāo)系(如圖)
設(shè),則點(diǎn)的坐標(biāo)為
在中,,,.
點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
,
設(shè)平面的法向量為,則,.
即 令,解得
…………………10分
取平面的一個法向量為,依題意與的夾角為
,即, 解得(負(fù)值舍去)
因此,當(dāng)的長為時,二面角的大小為. …………………12分
18.(本小題滿分14分)
甲乙兩人進(jìn)行圍棋比賽,約定每局勝者得1分,
負(fù)者得分,比賽進(jìn)行到有一人比對方多分或打滿
局時停止.設(shè)甲在每局中獲勝的概率為,
且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時比賽
停止的概率為.
若右圖為統(tǒng)計這次比賽的局?jǐn)?shù)和甲、乙的總得
分?jǐn)?shù)、的程序框圖.其中如果甲獲勝,輸入,
;如果乙獲勝,則輸入.
寫什么條件?
(Ⅰ)在右圖中,第一、第二兩個判斷框應(yīng)分別填
(Ⅱ)求的值;
(Ⅲ)設(shè)表示比賽停止時已比賽的局?jǐn)?shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
注:“”,即為“”或?yàn)椤?sub>”.
【解】(Ⅰ)程序框圖中的第一個條件框應(yīng)填,第二個應(yīng)填. ………………… 4分
注意:答案不唯一.
如:第一個條件框填,第二個條件框填,或者第一、第二條件互換.都可以.
(Ⅱ)依題意,當(dāng)甲連勝局或乙連勝局時,第二局比賽結(jié)束時比賽結(jié)束.
有.
解得或. …………………………………6分
, . ………………………… 7分
(Ⅲ)(解法一)依題意知,的所有可能值為2,4,6. ………………………… 8分
設(shè)每兩局比賽為一輪,則該輪結(jié)束時比賽停止的概率為.
若該輪結(jié)束時比賽還將繼續(xù),則甲、乙在該輪中必是各得一分,此時,該輪比賽結(jié)果對下輪比賽是否停止沒有影響.
從而有,
,
.
隨機(jī)變量的分布列為: …………………………… 12分
故. …………………………… 14分
(解法二)依題意知,的所有可能值為2,4,6. ………………… 8分
令表示甲在第局比賽中獲勝,則表示乙在第局比賽中獲勝.
由獨(dú)立性與互不相容性得
,
,
. ………………… 12分
隨機(jī)變量的分布列為:
故. ………………… 14分
19.(本題滿分14分)
已知函數(shù)(,).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若不等式對一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.
【解】(Ⅰ) ………………… 2分
,
由,得.
,,.
又.
函數(shù)的單調(diào)遞增區(qū)間為,遞減區(qū)間為. ………… 6分
(Ⅱ)【法一】不等式,即為.……………(※)
令,當(dāng)時,.
則不等式(※)即為. …………………9分
令,,
在的表達(dá)式中,當(dāng)時,,
又時,,
在單調(diào)遞增,在單調(diào)遞減.
在時,取得最大,最大值為. …………………12分
因此,對一切正整數(shù),當(dāng)時,取得最大值.
實(shí)數(shù)的取值范圍是. ………………………… 14分
【法二】不等式,即為.………………(※)
設(shè),
,
令,得或. ………………………… 10分
當(dāng)時,,當(dāng)時,.
當(dāng)時,取得最大值.
因此,實(shí)數(shù)的取值范圍是. ………………………… 14分
20.(本題滿分14分)
在四邊形中,已知,點(diǎn)在軸上, ,且對角線.
(Ⅰ) 求點(diǎn)的軌跡的方程;
(Ⅱ)若點(diǎn)是直線上任意一點(diǎn),過點(diǎn)作點(diǎn)的軌跡的兩切線、,、為切點(diǎn),為的中點(diǎn).求證:軸或與軸重合;
(Ⅲ) 在(Ⅱ)的條件下,直線是否恒過一定點(diǎn)?若是,請求出這個定點(diǎn)的坐標(biāo);若不是,請說明理由.
【解】(Ⅰ)如圖,設(shè)點(diǎn)的坐標(biāo)為,
則,
,,即.
(解法一)(Ⅱ)對函數(shù)求導(dǎo)得,.
設(shè)切點(diǎn)坐標(biāo)為,則過該切點(diǎn)的切線的斜率是,該切線方程是.
又設(shè)點(diǎn)的坐標(biāo)為,
切線過點(diǎn),有,
化簡,得. …………………………6分
設(shè)、兩點(diǎn)的坐標(biāo)分別為、,則、為方程的兩根,
.
因此,當(dāng)時,直線與軸重合,當(dāng)時,直線與軸平行 …………9分
(Ⅲ) .
點(diǎn)的坐標(biāo)為.
又.
直線的方程為:,即.………()
當(dāng)時,方程()恒成立,
對任意實(shí)數(shù),直線恒過定點(diǎn),定點(diǎn)坐標(biāo)為. …………………………14分
(解法二)(Ⅱ)設(shè)點(diǎn)的坐標(biāo)為,利用切點(diǎn)弦直線方程的結(jié)論可得出直線的方程為,即 …………………………7分
由 得.
.
.
因此,當(dāng)時,直線與軸重合,當(dāng)時,直線與軸平行. ……………9分
(Ⅲ) 由(Ⅱ)得知直線的方程為,即.
后面解法同解法一.
21.(本題滿分14分)
已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
(Ⅰ)若數(shù)列滿足:,(),求數(shù)列的通項(xiàng);
(Ⅱ)若數(shù)列滿足:,().
(?)當(dāng)時,數(shù)列是否為等差數(shù)列?若是,請求出數(shù)列的通項(xiàng);若不是,請說明理由;
(?)當(dāng)時, 求證:.
【解】(Ⅰ), …………………………1分
,
即. …………………………3分
, 數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.
,即. …………………………5分
(Ⅱ)(?),
.
當(dāng)時,.
假設(shè),則.
由數(shù)學(xué)歸納法,得出數(shù)列為常數(shù)數(shù)列,是等差數(shù)列,其通項(xiàng)為. …………8分
(?), .
當(dāng)時,.
假設(shè),則 .
由數(shù)學(xué)歸納法,得出數(shù)列. …………………………10分
又,
,
即. …………………………12分
.
,
. …………………………14分
審題:石永生 命題:喻秋生 姚亮 黃元華
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com