相關習題
 0  364169  364177  364183  364187  364193  364195  364199  364205  364207  364213  364219  364223  364225  364229  364235  364237  364243  364247  364249  364253  364255  364259  364261  364263  364264  364265  364267  364268  364269  364271  364273  364277  364279  364283  364285  364289  364295  364297  364303  364307  364309  364313  364319  364325  364327  364333  364337  364339  364345  364349  364355  364363  366461 

科目: 來源: 題型:

【題目】已知平行四邊形ABCD中,對角線AC、BD相交于O.則下列說法準確的是(

A.時,平行四邊形ABCD為矩形

B.時,平行四邊形ABCD為正方形

C.時,平行四邊形ABCD為菱形

D.時,平行四邊形ABCD為菱形

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在菱形中,對角線、交于點,已知,

1)求的長;

2)點為直線上的一個動點,連接,將線段繞點順時針旋轉的角度后得到對應的線段(即于點

①當時,求的長;

②連接、,當的長度最小時,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與雙曲線相交于點,,與軸交于點

1)求直線的解析式;

2)若點軸上,且,求點的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】“垃圾分類”越來越受到人們的關注,我市某中學對部分學生就“垃圾分類”知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據圖中信息回答下列問題:

1)接受問卷調查的學生共有  人,條形統(tǒng)計圖中的值為  ;

2)扇形統(tǒng)計圖中“了解很少”部分所對應扇形的圓心角的度數為  ;

3)若從對垃圾分類知識達到“非常了解”程度的2名男生和2名女生中隨機抽取2人參加垃圾分類知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系xOy,直線軸于點、交軸于點

1)求直線的函數表達式;

2)設點軸上的一點

①在坐標平面內是否存在點,使以、為頂點的四邊形是菱形?若存在,求出點的坐標;若不存在,說明理由.

②若是線段的中點,點與點關于軸對稱,點在直線上,當為等邊三角形時,求直線的函數表達式.

查看答案和解析>>

科目: 來源: 題型:

【題目】中,,為高,

1)如圖1,當時,求的值;

2)如圖2,點的中點,過點,求的值;(用含的代數式表示)

3)在(2)的條件下,若,則   .(直接寫出結果)

查看答案和解析>>

科目: 來源: 題型:

【題目】在“雙11”期間,新華商場銷售某種冰箱,每臺進價為3000元,調查發(fā)現,當銷售價為3600元時,平均每天能售出16臺,而當銷售價每降低50元時,平均每天就能多售出4. 假設每臺冰箱降價元(x50的整數倍,0<x<600.

1直接寫出平均每天商場銷售冰箱的數量y(臺)與x(元)之間的關系;

2要想這種冰箱的銷售利潤平均每天達到12800元,每臺冰箱的定價應為多少元?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,斜邊中點,,,邊上,,若相似,則___.

查看答案和解析>>

科目: 來源: 題型:

【題目】(1) 知識儲備

①如圖 1,已知點 P 為等邊△ABC 外接圓的弧BC 上任意一點.求證:PB+PC= PA.

②定義:在△ABC 所在平面上存在一點 P,使它到三角形三頂點的距離之和最小,則稱點 P 為△ABC

的費馬點,此時 PA+PB+PC 的值為△ABC 的費馬距離.

(2)知識遷移

①我們有如下探尋△ABC (其中∠A,∠B,∠C 均小于 120°)的費馬點和費馬距離的方法:

如圖 2,在△ABC 的外部以 BC 為邊長作等邊△BCD 及其外接圓,根據(1)的結論,易知線段____的長度即為△ABC 的費馬距離.

②在圖 3 中,用不同于圖 2 的方法作出△ABC 的費馬點 P(要求尺規(guī)作圖).

(3)知識應用

①判斷題(正確的打√,錯誤的打×):

ⅰ.任意三角形的費馬點有且只有一個__________;

ⅱ.任意三角形的費馬點一定在三角形的內部__________.

②已知正方形 ABCD,P 是正方形內部一點,且 PA+PB+PC 的最小值為,求正方形 ABCD 的

邊長.

查看答案和解析>>

科目: 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點DAB的中點,DE⊥BC,垂足為點E,連接CD

1)如圖1,DEBC的數量關系是   

2)如圖2,若P是線段CB上一動點(點P不與點B、C重合),連接DP,將線段DP繞點D逆時針旋轉60°,得到線段DF,連接BF,請猜想DE、BFBP三者之間的數量關系,并證明你的結論;

3)若點P是線段CB延長線上一動點,按照(2)中的作法,請在圖3中補全圖形,并直接寫出DE、BF、BP三者之間的數量關系.

查看答案和解析>>

同步練習冊答案