科目: 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)文). 題型:選擇題
函數(shù)的定義域為
,若對于任意
,當(dāng)
時,都有
,則稱函數(shù)
在
上為非減函數(shù).設(shè)函數(shù)
在[0,1]上為非減函數(shù),且滿足以下三個條件:①
;②
;③
,則
等于(
)
A.
B.
C.1
D.
查看答案和解析>>
科目: 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)文). 題型:填空題
在平面幾何里,已知的兩邊
互相垂直,且
,則
邊上的高
;現(xiàn)在把結(jié)論類比到空間:三棱錐
的三條側(cè)棱
兩兩相互垂直,
平面
,且
,則點
到平面
的距離
.
查看答案和解析>>
科目: 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)文). 題型:填空題
給出下列四個命題:
①“向量,的夾角為銳角”的充要條件是“·>0”;
②如果f(x)=x,則對任意的x1、x2Î(0,+¥),且x1¹x2,都有f()>;
③設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意xÎ[a,b],都有|f(x)−g(x)|£1成立,則稱f(x)和g(x)在[a,b]上是“密切函數(shù)”,區(qū)間[a,b]稱為“密切區(qū)間”.若f(x)=x2−3x+4與g(x)=2x−3在[a,b]上是“密切函數(shù)”,則其“密切區(qū)間”可以是[2,3];
④記函數(shù)y=f(x)的反函數(shù)為y=f −1(x),要得到y=f −1(1−x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y=f −1(1−x)的圖象.其中真命題的序號是 。(請寫出所有真命題的序號)
查看答案和解析>>
科目: 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)文). 題型:解答題
已知函數(shù)
(Ⅰ)求函數(shù)的最小正周期及圖象的對稱軸方程;
(Ⅱ)設(shè)函數(shù)求
的值域.
查看答案和解析>>
科目: 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)文). 題型:解答題
某校從參加高一年級期中考試的學(xué)生中隨機抽出60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[40,50)、[50,60)、…、[90,100)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;
(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;
(Ⅲ)若從60名學(xué)生中隨機抽取2人,抽到的學(xué)生成績在[40,60)記0分,在[60,80)記1分,在[80,100)記2分,求抽取結(jié)束后的總記分至少為2分的概率.
查看答案和解析>>
科目: 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)文). 題型:解答題
如圖,三棱柱
中,側(cè)面
底面
,
,
且,O為
中點.
(Ⅰ)證明:平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)在上是否存在一點
,使得
平面
,若不存在,說明理由;若存在,確定點
的位置.
查看答案和解析>>
科目: 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)文). 題型:解答題
設(shè)二次函數(shù)f(x)=mx2+nx+t的圖像過原點,g(x)=ax3+bx−3(x>0),f(x), g(x)的導(dǎo)函數(shù)為,g¢(x),且=0, =−2,f(1)=g(1), =g¢(1).
(Ⅰ)求函數(shù)f(x),g(x)的解析式;
(Ⅱ)求F(x)=f(x)−g(x)的極小值;
(Ⅲ)是否存在實常數(shù)k和m,使得f(x)³kx+m和g(x)£kx+m成立?若存在,求出k和m的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)文). 題型:解答題
已知數(shù)列{an}滿足an+1=.
(Ⅰ)若方程f(x)=x的解稱為函數(shù)y=f(x)的不動點,求an+1=f(an)的不動點的值;
(Ⅱ)若a1=2,bn=,求證:數(shù)列{bn}是等比數(shù)列,并求數(shù)列{bn}的通項.
(Ⅲ)當(dāng)任意nÎN*時,求證:b1+b2+b3+…+bn<
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com